
P�����: Physical Event Verification in Smart Homes
Simon Birnbach, Simon Eberz, Ivan Martinovic
Department of Computer Science, University of Oxford

�rstname.lastname@cs.ox.ac.uk

ABSTRACT
With the rising availability of smart devices (e.g., smart thermostats,
lights, locks, etc.), they are increasingly combined into “smart
homes”. A key component of smart homes are event sensors that
report physical events (such as doors opening or the light turning
on) which can be triggered automatically by the system or manu-
ally by the user. However, data from these sensors are not always
trustworthy. Both faults in the event sensors and involvement of
active attackers can lead to reporting of events that did not physi-
cally happen (event spoo�ng). This is particularly critical, as smart
homes can trigger event chains (e.g., turning the radiator o�when
a window is opened) without involvement of the user.

The goal of this paper is to verify physical events using data from
an ensemble of sensors (such as accelerometers or air pressure sen-
sors) that are commonly found in smart homes. This approach both
protects against event sensor faults and sophisticated attackers.

In order to validate our system’s performance, we set up a “smart
home” in an o�ce environment. We recognize 22 event types using
48 sensors over the course of two weeks. Using data from the
physical sensors, we verify the event stream supplied by the event
sensors. We consider two threat models: a zero-e�ort attacker who
spoofs events at arbitrary times and an opportunistic attacker who
has access to a live stream of sensor data to better time their attack.
We achieve perfect classi�cation for 9 out of 22 events and achieve
a 0% false alarm rate at a detection rate exceeding 99.9% for 15
events. We also show that even a strong opportunistic attacker is
inherently limited to spoo�ng few select events and that doing so
involves lengthy waiting periods.

CCS CONCEPTS
• Security and privacy→ Intrusion detection systems; Distributed
systems security; Mobile and wireless security.

KEYWORDS
Internet of things; smart home; event veri�cation
ACM Reference Format:
Simon Birnbach, Simon Eberz, Ivan Martinovic. 2019. P�����: Physical
Event Veri�cation in Smart Homes. In 2019 ACM SIGSAC Conference on
Computer and Communications Security (CCS’19), November 11–15, 2019,
London, United Kingdom. ACM, New York, NY, USA, 13 pages. https://doi.
org/10.1145/3319535.3354254

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the� rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
CCS ’19, November 11–15, 2019, London, United Kingdom
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6747-9/19/11. . . $15.00
https://doi.org/10.1145/3319535.3354254

Figure 1: An example of how door events can a�ect di�er-
ent sensors. The red lines correspond to the timing of� rst a
door opening event and then a door closing event. One can
see that the door closing event has a clear e�ect on all three
sensors, whereas the door opening event a�ects primarily
the light and pressure sensors.

1 INTRODUCTION
With the advent of commercial smart home devices, the Internet-
of-Things (IoT) paradigm is no longer a dream of the future. From
smart locks over smart surveillance cameras to remote-controlled
garage doors, IoT devices are starting to permeate consumer homes,
enriching them with a wide variety of functions and information
that is only a button press away.

Unfortunately, this new and fast-evolving market has pushed
manufacturers towards quick development cycles that favor fea-
tures and a fast time to market over security issues. This has led
to an ecosystem where vulnerable devices are far-spread and often
remain unpatched [18].

Several approaches have been proposed to reduce the risk posed
by insecure IoT devices. Most of these approaches focus on either
device and smart application permission systems [12, 17, 25] or
network tra�c analysis [2, 21, 30]. But none of these approaches
can protect event integrity after a device has been compromised.
A compromised device can control what data it sends to the smart
home system and thus lie about what it is really doing or sensing.
Possible attacks range from smart cameras being turned on without
the knowledge of the occupants to smart locks not locking the door
as instructed. An interesting property of smart home systems is
the interconnectedness of events. A device that seems to have no
security relevance can become an attack vector if it triggers actions
by other devices (e.g., a system that unlocks the back door when the

Session 7A: Internet of Things CCS ’19, November 11–15, 2019, London, United Kingdom

1455

https://doi.org/10.1145/3319535.3354254
https://doi.org/10.1145/3319535.3354254
https://doi.org/10.1145/3319535.3354254

kitchen light is being turned on [7]). An overview of smart home
devices and potential attacker goals can be found in Table 1.

While the presence of cheap and possibly insecure devices in
their homes puts consumers at risk, the pervasiveness of sensors
also provides new ways to strengthen the security of these systems.
As sensors can measure the physical e�ects of device actions and
events, they can thus be used as a secondary source to verify that
these events have actually occurred. As an example, Figure 1 shows
how a closing door a�ects a pressure sensor, a light sensor and
an accelerometer placed within the same room. Table 1 provides a
(non-exhaustive) overview of which sensors are expected to sense
e�ects of events relating to current smart home devices.

In this work, we introduce P�����, a system that automatically
veri�es events in smart homes based on their physical signatures.
As events are fed into the system, it uses the distributed sensor
data for supervised learning of the corresponding event signatures.
By leveraging sensors available in the same physical environment,
P����� can verify if reported events have actually occurred. Our
system is able to automatically learn these signatures and the sen-
sors that are relevant for veri�cation without supervision by the
user. We show the feasibility of P����� in a real-world experiment.

Contributions.
• We introduce P�����, a system to automatically learn smart
home event signatures for various sensing modalities.
• We evaluate P����� in a real-world experiment with 48 sen-
sors and 22 di�erent event types over two weeks. We make
this dataset publicly available 1.
• We introduce a method for the attacker to predict spoo�ng
opportunities to increase their success rate and show that
P����� is still e�ective against this strong adversary.

The remainder of the paper is organized as follows: Section 2
gives an overview of smart home background and related work.
Sections 3 and 4 outline our system and threat model. We describe
our experimental design in Section 5 and our methods in Section 6.
We present our results in Section 7 and conclude the paper in
Section 8.

2 BACKGROUND
2.1 Smart home systems
Smart home systems enable users to remotely control and monitor
devices and automate everyday tasks. These devices range from
surveillance cameras over smart locks to self-learning thermostats.
Due to these devices, users are now able to remotely view their
homes, automatically unlock the front door when arriving at home,
and o�oad the burden of worrying about energy-e�cient heating.

There are many competing smart home systems ranging from
commercial solutions such as Samsung’s SmartThings [16] and
Apple’s HomeKit [15] to open-source tools like OpenHAB [24] and
HomeAssistant [3].

Even though these systems use di�erent terminology, they all
have the same fundamental conceptual design. Each system uses
a smart hub as a central node that aggregates data and controls
the interactions between devices. Additionally, the hub often con-
nects devices to external cloud services. Devices can have sensors
1https://www.doi.org/10.5287/bodleian:mv22Jk2Xj

measuring their physical environment, as well as actuators that
interact with it. For example, the opening and closing of a door can
be detected by a magnetic contact switch (sensor) mounted on the
doorframe, whereas a smart light switch (actuator) can be used to
remotely control a ceiling light.

These devices have internal states that are representations of the
actual physical states they are monitoring. In the previous example,
the door can be either “open” or “closed”, while the ceiling light has
the states “on” or “o�”. Physical events are state changes that can be
triggered by the user directly (e.g., opening a door), through a user
interface (e.g., “Alexa, turn on the kitchen light”), or automatically
by the system hub (e.g., lower blinds at sunset every day). When a
smart device notices that a monitored physical state changes, the
device noti�es the hub by sending an event noti�cation. Note the
di�erence between physical events and event noti�cations. Physical
events are the phenomena happening in the real world, whereas
event noti�cations represent the view that a smart device has (or
claims to have) of those phenomena.

Automations of devices are con�gured by the user through rules
that typically follow the trigger-action principle. For example, a
rule can state that whenever the kitchen door opens (trigger), the
ceiling light in the kitchen should be turned on (action). In many
systems, several actions can be grouped together by creatingmodes
to simplify rules. If the user wants to open the blinds and make
a cup of co�ee every time their alarm goes o�, they can create a
“good-morning” mode that triggers all these actions at a certain
time rather than program them all individually.

2.2 Related work
Security of smart home systems. There has been extensive re-
search focusing on the security of smart home systems and devices.
Fernandes et al. [11] investigated the popular SmartThings system
and uncovered several vulnerabilities due to overprivileged smart
home applications. One of these vulnerabilities allows malicious
applications running on the smart hub to spoof events as if they
were originating from other devices in the network, thus triggering
unintended actions such as erroneously setting o� a� re alarm. This
risk extends even beyond malicious control software as presented
in their paper, as compromised devices can easily send false event
updates, or suppress the noti�cation of an actual event.

As demonstrated by Sivaraman et al. [31], malicious mobile
phone applications can compromise home networks and thus open
up smart home systems to attacks from remote attackers over the
internet. Ronen et al. [27] showed how physical proximity can be
used to compromise smart devices. They exploited communication
protocol� aws present in Philips Hue smart lamps to create a worm
that can spread across a city from household to household. In [26],
Ronen and Shamir further showed how attackers can misuse com-
promised smart devices such as smart lights and go beyond their
intended functionality.

Security of trigger-action programming. Previous work has
highlighted the risks posed by unsafe and insecure interactions
between devices and smart applications. Device actuations can
lead to unintentional consequences if trigger-action rules are be-
ing used in di�erent contexts [17], if they include external trigger-
action platforms [7], or if they include hidden inter-app interactions

Session 7A: Internet of Things CCS ’19, November 11–15, 2019, London, United Kingdom

1456

Table 1: Smart home devices and possible attacker goals. Attacker goals follow the classi�cation by Denning et. al. [9]. Each de-
vice a�ects the readings of nearby sensors that could be used for event veri�cation. Devices used in our real-world experiment
are highlighted in bold.

Device Attacker goal Sensors for veri�cation References

Door Enabling physical entry, Physical theft Accelerometer, Light, [7]
Air pressure, Microphone

Window Enabling physical entry, Physical theft Accelerometer, Air quality, [10, 17]
Air pressure, Microphone

Window shade Espionage, Voyeurism Accelerometer, Power, [5, 22]
Microphone, Light

Light Data ex�ltration, Espionage, Causing physical harm Light, Power [26, 27]

Smart cam Espionage, Voyeurism Power, Accelerometer [8]

Thermostat Enabling physical entry, Extortion Temperature [9, 17]

Door lock Enabling physical entry, Physical theft Accelerometer, Microphone [14]

Siren Causing physical harm, Light, Microphone [11]
Causing environment damage, Misinformation

Kettle, Oven, Iron Causing physical harm, Power, Temperature, Humidity, [7, 10]
Causing environment damage Accelerometer, Microphone

through physical channels [10]. These issues have been addressed
through more� ne-grained permission systems [17, 32], better log-
ging for forensic purposes [33], and static analysis of smart applica-
tions [6, 7, 10, 23] to detect possible physical channel interactions.
While these systems help to reduce the risk that these interactions
pose, they do not protect against cases where an existing and de-
sired trigger-action rule is being exploited, e.g., by a compromised
smart home device.

Device and behavior�ngerprinting. There has been an increased
interest in identifying smart home devices and� ngerprinting of
device behavior. Several solutions have been proposed that iden-
tify devices based on their network tra�c� ngerprint [4, 21, 30].
Other work has focused on inferring smart home activities and de-
vice event signatures from network tra�c to highlight the privacy
implications of wireless communication in smart homes [1, 2].

Closest to our work is HoMonit [34], which uses network tra�c
based event� ngerprints to detect event spoo�ng from misbehaving
smart applications. HoMonit builds automata that model the behav-
ior of smart applications and then extracts event signatures from
wireless smart home tra�c. In combination, these methods enable
the detection of misbehaving smart applications if the expected
behavior deviates from the actual behavior inferred from the net-
work tra�c. However, this does not prevent event spoo�ng when
the attack originates from outside the smart hub, e.g., because of a
compromised smart home device. In this case, the event network
signature will be present although the triggering event has not
occurred.

Event detection with heterogeneous sensors. Recent research
has exploited the fact that smart home events have physical ef-
fects that can be measured through various sensing modalities.
Perceptio [13] builds on the idea of context-based pairing [20, 29]

which relies on common sensor measurements to provide the en-
tropy needed to derive symmetric keys. But as devices present in
a smart home have diverse sensing modalities, pairing protocols
must consider this device heterogenenity in order to be usable. The
authors of this paper make the observation that even if devices
do not share a common sensor type, they can be a�ected by the
same physical events in di�erent ways. For example, when in use, a
co�ee machine has a distinct sound� ngerprint that can be picked
up by a microphone. If the co�ee machine is connected to a power
meter, that device can detect the power usage of the co�ee machine.
Although those two sensors might measure very di�erent patterns
and even register the event at di�erent times, the timespan between
two subsequent events is the same. Perceptio uses this inter-event
timing information to construct� ngerprints for each event type
witnessed by a sensor. These� ngerprints are then used to provide
the entropy for its pairing protocol.

In a non-security context this observation has been used for
activity recognition systems. A recent paper aiming to provide
general-purpose sensing in home environments is SyntheticSen-
sors [19]. In this paper, synthetic sensors are introduced as an
abstraction to physical events to improve the usability of such a
system. The system is based on a single sensor board with nine
sensors covering twelve di�erent sensing modalities. Individual
synthetic sensors are then represented by a base-level Support Vec-
tor Machine (SVM), and a global multiclass SVM is trained on the
output of all the base-level SVMs. Examples for the 38 synthetic
sensors considered in this paper are events that also typically ap-
pear in smart home systems, such as "Kettle on", "Door closed"
or "Dishwasher running". This paper gives an interesting outlook
on how and what kind of events can be detected in a smart home
setting.

Session 7A: Internet of Things CCS ’19, November 11–15, 2019, London, United Kingdom

1457

However, unlike P�����, it is not designed with an adversary
in mind and events have to be labeled explicitly by the user. In
contrast, P����� can verify the veracity of reported smart home
events to defend against event spoo�ng attacks and uses smart
home event noti�cations to learn event signatures automatically.

3 SYSTEM MODEL
We consider a system model inspired by contemporary smart home
systems as described in Section 2. These systems are controlled by
a central hub, and all their tra�c is routed through that hub.

Besides the hub, P����� consists of several heterogeneous smart
home devices. Devices have attributes that describe what they can
do. These attributes can be possible device states or measurements,
and supported actions.

In our system, we di�erentiate between two di�erent attribute
types. Attributes related to physical events are considered to be
event sources. These attributes consist of a �nite list of possible
device states or actions. For example, a door sensor has the states
“open” and “closed”, whereas a window shade understands the ac-
tions “up” or “down”.

When the state of a device changes in the real world, we refer to
it as a physical event. For example, this can be someone turning the
door handle and pushing the door to open it, or the window shade
moving from one position to another. We de�ne event noti�cations
as reported state changes occurring at time t . An event noti�cation
is represented by a tuple Et = (d,a), where d is the a�ected device
and a is the changed attribute of the event source. We assume
that events are reported in a timely manner, i.e., the system rejects
delayed event noti�cations.

The goal of P����� is to verify if the physical event associated
with a received event noti�cation did in fact occur. Hence, the
veri�cation of a physical event is triggered by the reception of an
event noti�cation.

Other sensors of various datatypes provide measurements and
are used as veri�cation sensors. Data collected by veri�cation sensors
gets transmitted to the central hub for further processing. This data
is then being used to learn the sensor-speci�c physical�ngerprints
of events. Event veri�cation is done by the hub and is based on the
aggregate data of all the sensors. We assume that event sources
remain uncompromised during training and that the hub system
software and veri�cation sensors remain uncompromised during
operation.

P����� provides a countermeasure to event spoo�ng, i.e., when
an event source or a malicious application running on the hub [11]
reports an event that has not physically happened. This should not
be confused with event masking, i.e., when no event noti�cation
is sent for a real physical event. We leave the exploration of event
masking for future work. An overview of P����� is given in Figure 2.

4 THREAT MODEL
We consider an attacker that is able to remotely compromise event
sources in the smart home. This allows them to trigger any sup-
ported actions or events directly, bypassing the hub. The attacker
is, however, not able to make any physical changes to the devices
or events. Furthermore, the attacker is able to choose when and if

Go up

Opened

Fault

SpoofingSpoofing

On

Figure 2: This� gure gives an overview over P����� and
three exemplary scenarios. The window shade at the top ex-
hibits a fault and does not act on a command by the smart
hub in the middle. On the bottom, the door sensor and
light bulb send a spoofed event to the hub, falsely claim-
ing to have been triggered. P����� uses veri�cation sen-
sors to check the physical� ngerprints of the correspond-
ing events. This is possible as these events have measurable
e�ects (dashed lines) on sensors measuring physical phe-
nomena such as powermeters (top left), accelerometers (top
right) or light sensors (bottom).

they report an event to the hub. However, events that have a large
delay between event timestamp and time of noti�cation will be
automatically rejected by the system.

For example, an attacker might want to gain access to a house.
Similar to the example in IoTGuard [7], the back door of the house
gets unlocked when the smart home enters a “home mode” which
is triggered when the front door opens. The attacker can then use a
compromised door sensor to spoof an opening door event to trigger
the “home mode” and thus unlock the back door.

However, mismatches between the internal state of a smart home
system and reality are not limited to malicious behavior. In our ex-
periments, we have experienced how device faults can have similar
e�ects to attacks. Examples include a window shade not executing
commands despite acknowledging them (e.g., due to being stuck)
and a smart radiator valve that did not notice that it was constantly
heating due to a blocked actuation pin. These kinds of faults are
particularly common with “retro�tted” smart devices, i.e., regular
devices with added smart control logic. The less integrated the
smart and normal components of the device are, the more likely is
a mismatch between the device’s reported and actual state changes.

Session 7A: Internet of Things CCS ’19, November 11–15, 2019, London, United Kingdom

1458

Figure 3: The device deployment for the experiment is pic-
tured in this� oorplan. The numbers refer to the group num-
bers in Tables 3 and 4. Sensor group 8 ismounted on the door,
groups 9 and 11 are placed on tables, and group number 4 is
�xed to a shelf. All the other sensors are mounted on the
wall.

Our system considers two types of attackers:
• Zero-e�ort attacker/Sensor fault
• Opportunistic attacker

For both types of attackers, event sensors are considered to be
untrusted, as they can be spoofed or exhibit random faults.

The zero-e�ort attacker spoofs events at arbitrary times and
does not have knowledge of any system parameters such as the
features used for detection. Furthermore, this attacker can not read
the data of the veri�cation sensors.

In comparison, the opportunistic attacker knows all the system
parameters such as the features used for detection and has read
access to the current data of all sensors. Using this information,
this attacker tries to spoof only at times when they think they
will be likely to succeed. The attacker’s goal is to maximize the
probability of their spoofed event going undetected (i.e., being
incorrectly judged as genuine) while minimizing the amount of
time they have to wait for a spoo�ng opportunity. Neither attacker
has physical access to devices and we assume attackers can not
modify or suppress data originating from veri�cation sensors.

5 EXPERIMENTAL DESIGN
To evaluate the feasibility of our proposed system, we conduct an
experiment in which we collect the physical signatures of 22 event
types in a smart o�ce environment. The experiment is conducted
continuously over two weeks while the o�ce is being used by four
people for their everyday work.

5.1 Overview
During the study, we collect data for a diverse range of events and
sensing modalities. In an o�ce, we distribute thirteen Raspberry Pis,
each equipped with several environmental sensors to collect data.
The deployment for this experiment can be found in Figure 3, while
a detailed sensor con�guration is listed in Table 3. A description of
the sensor types used in the experiment can be found in Table 2.
We consider as event sources: an o�ce door with automatic closing

Table 2: The di�erent sensor modality types considered as
veri�cation sensors in the real-world experiment. The num-
ber of sensors deployed of a certain type is given in paren-
theses.

Abbreviation Sensor modality (#)

A Accelerometer (10)
G Gyroscope (10)
M Magnetometer (1)
P Air pressure (9)
H Humidity (5)
T Temperature (10)
L Light (7)
PM Power meter (7)
AQ Air quality/CO2 (2)
S Sound pressure level (6)
R Received signal strength (6)
TC Thermal camera (2)

mechanism, a sliding window, a ceiling light, an automatic window
shade, a fridge, an automated tower fan, a smart radiator valve,
a smart co�ee machine, a PC with attached screen and a smart
camera with privacy mode. Over the whole two week duration of
the study, we registered 2773 events in our smart environment. A
description of the event sources together with their corresponding
events and event occurrences can be found in Table 4.

5.2 Data collection
The ground truth for the events is collected as follows. The door,
window and fridge are out�tted with magnetic contact sensors,
shown in Figure 4a. Light switch events are registered through
a force-sensitive resistor that registers when the switch is being
pressed, see Figure 4b. The smart cam follows a schedule, period-
ically switching between privacy mode and normal mode every
hour. When the smart cam is in privacy mode, its camera is tilted
towards its case, preventing it from recording video from the room.
Window shade, radiator, fan and co�ee machine can be controlled
via a tablet, see Figure 4c. As the fan used in the experiment does
not have any network connectivity, we automate it by using a Rasp-
berry Pi Zero as an infrared remote control, shown in Figure 4b.
The doorbell events are being polled from the Ring servers.

Events are triggered sporadically by the o�ce occupants and
automatically at certain times. Smart cam, PC and screen events
are only triggered automatically, whereas door, window, fridge,
doorbell, and co�ee machine events are only triggered manually.
Automatic events follow a schedule with randomized starting times
to avoid systematic cross-contamination of event signatures. More
details on event schedules are given in Table 5.

We use the Network Time Protocol (NTP) to synchronize time
across the Raspberry Pis used in the experiment. The sensors con-
nected to the Raspberry Pis are continuously being polled over
their I2C interface. The measured data is being saved locally on
USB sticks. As an example, the sensor con�guration of one Rasp-
berry Pi is shown in Figure 4a.

Session 7A: Internet of Things CCS ’19, November 11–15, 2019, London, United Kingdom

1459

Table 3: The sensor con�guration for the real-world exper-
iment. The sensor modalities covered by each sensor are
given in parentheses. The used abbreviations can be found
in Table 2. The deployment is pictured in Figure 3.

Group # Device Sensor (Modalities)

1 Pi #1

MPU6050 (A/G)
BMP280 (P/T)
TSL2560 (L)
USB microphone (S)
Ralink RT5370 USB WiFi dongle (R)

2 Pi #2

MPU6050 (A/G)
BMP280 (P/T)
TSL2560 (L)
USB microphone (S)
Ralink RT5370 USB WiFi dongle (R)

3 Pi #3

MPU6050 (A/G)
BME680 (P/H/T)
TSL2560 (L)
SGP30 (AQ)
USB microphone (S)
Ralink RT5370 USB WiFi dongle (R)
Contact sensor (window 2)

4
Pi #4 MPU6050 (A/G)

Contact sensor (window 1)
Plug #3 TP-Link HS110 (PM of window shade)
Plug #4 TP-Link HS110 (PM of smart cam)

5 Pi #5

MPU6050 (A/G)
BMP280 (P/T)
TSL2560 (L)
USB microphone (S)
Ralink RT5370 USB WiFi dongle (R)

6 Pi #6

MPU6050 (A/G)
BMP280 (P/T)
TSL2560 (L)
USB microphone (S)
Ralink RT5370 USB WiFi dongle (R)

7 Pi #7

MPU6050 (A/G)
BME680 (P/T/H)
TSL2560 (L)
SGP30 (AQ)
USB microphone (S)
Ralink RT5370 USB WiFi dongle (R)
Force-sensitive resistor (ligh switch)

8 Pi #8

ST Micro LPS25H (P/T)
ST Micro HTS221 (H/T)
ST Micro LSM9DS1 (A/G/M)
Contact sensor (door)

9

Pi #9 MPU6050 (A/G)
Pi #13 Fan remote control
Plug #5 TP-Link HS110 (PM of fan)
Plug #6 TP-Link HS110 (PM of PC)
Plug #7 TP-Link HS110 (PM of screen)

10
Pi #10

MPU6050 (A/G on fridge)
BME680 (A/T/H on fridge)
BME680 (A/T/H inside fridge)
TSL2560 (L inside fridge)
Contact sensor (fridge)

Plug #1 TP-Link HS110 (PM of fridge)
Plug #2 TP-Link HS110 (PM of co�ee machine)

11 Pi #11 MLX90640 (TC)

12 Pi #12 MLX90640 (TC)

Table 4: This table shows the event sources considered in the
real-world experiment and their corresponding event noti�-
cations. The number of event occurrences is given in paren-
theses. The group number refers to the deployment group
number pictured in Figure 3.

Group # Event source Event noti�cations (#)

3
Window

Window opened (44)
Window closed (44)

equiva eQ3 radiator
thermostat

Radiator on (41)
Radiator o�(41)

4

Samsung SmartCam
SNH-VP6410PN

Camera on (156)
Camera o�(156)

Teptron Move window
shade controller

Shade up (74)
Shade down (75)

7 Light switch Light on (47)
Light o�(48)

8 Door
Door opened (340)
Door closed (340)

Ring doorbell Doorbell used (52)

9

Desktop PC PC on (73)
PC o�(72)

LCD screen
Screen on (144)
Screen o�(213)

Tower fan
Fan on (334)
Fan o�(335)

10 Mini fridge Fridge opened (56)
Fridge closed (56)

Smarter Co�ee Co�ee machine used (34)

Table 5: This table gives an overview over which events were
triggered manually or automatically. For automatically trig-
gered events, the schedule of device actuations is given.

Event source Manual Automatic Schedule

Camera 7 3 Toggle every hour (24/7)
Co�ee machine 3 7 –
Door 3 7 –
Doorbell 3 7 –

Fan 3 3
Night: 2 min every 30 min
day: 2 min every 2 h

Fridge 3 7 –
Light switch 3 7 –
PC 7 3 2 h on, 2 h o�(24/7)

Radiator 3 3
Twice per day for 30 min
once for 15 min

Screen 7 3
30 min on, 30 min o�
during PC duty cycle

Window shade 3 3
6-9am: toggle every 30min
7-9pm: toggle every 30min

Window 3 7 –

Session 7A: Internet of Things CCS ’19, November 11–15, 2019, London, United Kingdom

1460

Contact switch

Pressure/temperature/
humidity sensor

Light sensor

Accelerometer/
Gyroscope

Air quality
sensor

USB
microphone

USB wifi
dongle

USB stick

(a) The sensor con�guration for one of the
Raspberry Pis. A detailed listing of the sen-
sor con�guration can be found in Table 3.
The contact switch at the top is being used
to detect when the window is being opened
or closed.

Force-sensitive
resistor

Light switch

Tower fan

IR emitter
IR receiver

(b) The fan can be remote controlled
through a Rasberry Pi Zero acting as an IR
remote. Light switch presses are recorded
through an attached force-sensitive resis-
tor.

(c) The user interface running on an Ama-
zon Fire tablet. It allows users to control the
fan, radiator and window shade, as well as
make co�ee.

Figure 4: Experimental setup

In addition to the sensors connected to the Raspberry Pis, we
use TP-Link HS110 power meters to measure the voltage, current
and power usage of the corded devices. The measurement data of
the power meters is continuously polled over WiFi.

5.3 Ethical concerns
This project has been reviewed by and received clearance by the
responsible research ethics committee at our university. The main
concerns relate to the door contact sensors, thermal cameras and
the microphones used as sound pressure sensors. The door contact
sensors could, in theory, be used to track people’s movement (i.e.,
when they enter or leave the o�ce). However, as the o�ce is used
by multiple people, it would not be possible to relate this data to in-
dividuals. In addition, individuals can enter or leave the room freely
if the door is propped open. Naturally, microphone data would be
far more sensitive. To avoid this issue, we use the microphones
only as sound pressure sensors that record sound levels, rather
than the raw audio. As such, it is impossible for sensitive audio
data (e.g., conversations) to be recorded. Raw sound pressure values
allow the detection of noise, but they do not allow one to accurately
determine the event or activity that caused it. Despite their low
resolution, the thermal cameras could be used as low-quality video
cameras, as the outlines of humans can be easily distinguished from
the colder environment. Therefore, we only collect column and row
averages of thermal image frames and thus make it impossible to
recreate the original video data.

6 METHODS
6.1 Data labelling
Separately for each event, we label all points in time with either
0 (no event occurred) or 1 (event occurred). The timestamps of 1-
samples are identi�ed by the corresponding ground truth (e.g., the
precise moment a door closes as identi�ed by the contact switch).
The event time for automatically triggered events is the moment the
command is sent to the device. 0-events are generated periodically
in 1-second intervals for the remainder of time. This approach
initially leads to “ambiguous” labels close to events. For example, if
a door closes at time t, the system will likely detect (and correctly
verify) this in a small window around t. The fact that a 0-sample
very close to a 1-sample is classi�ed as 1 (i.e., potential spoo�ng
opportunity) does arguably not pose a problem. While this would,
in theory, allow the attacker to spoof events just before or after
actual events, there would be no incentive to do so. In order to
deal with this, we use so-called safety margins around events. We
remove samples measured during such a safety margin from both
the training and test data. We set the size of the safety margin to
twice the size of the largest sensor window.

6.2 Dataset division
We split our 2-week dataset into three parts: development, train-
ing and testing. Each of these parts forms a block of consecutive
samples, rather than choosing the appropriate fraction of samples
randomly over the entire dataset. This re�ects actual system op-
eration, for which the training phase has to predate testing in its

Session 7A: Internet of Things CCS ’19, November 11–15, 2019, London, United Kingdom

1461

(a) Light sensor (b) Accelerometer

Figure 5: Window parameter grid search for the "Door closed" event. Values given are the average RMI.

entirety. This is especially crucial as we require the event sources to
remain uncompromised during the training phase. We use the�rst
day of data for development and split the remaining data evenly
into training and testing sets.

The development set is used for two purposes: Calculation of
the sensor-speci�c windows and feature selection. We describe the
methods for both of these in the following subsections. Based on
the selected features, we then train and test the classi�er on the
remaining two parts.

6.3 Sensor window selection
Each event is associated with a single timestamp (e.g., the precise
moment the contact sensors detects a closing or opening door).
However, the physical signature of the event can precede, follow or
overlap with the event. An illustration of these di�erences is shown
in Figure 1. Even for the same event, the time window in which the
event signature is noticeable depends on the sensor. For example,
the door closing is preceded by changes in light and followed by an
accelerometer response. This event signature window de�nes the
period over which sensor data is collected to verify the event (see
the next subsection for details on feature extraction). While it would
be possible in principle to manually set these sensor windows for
each event based on the data, we develop an automatic approach
that is used before the system’s training phase:

The window size and position relative to the event is controlled
by two parameters: t+ and t�. Given an event timestamp t, the
corresponding window will be the interval (t � t�, t + t+). For each
event, we obtain the optimal values for both parameters through a
grid search on the development set. The performance indicator for
this grid search is the average relative mutual information (RMI,
see next subsection) of all features. In order to avoid distortion of
the average by very poor features, we exclude features that do not

perform better than a “random” feature. An illustration of the results
of this grid search for the same event and two di�erent sensors can
be seen in Figure 5. It is evident that the window for the light sensor
largely precedes the event (i.e., negative values of t�) whereas the
accelerometer response achieves the best distinctiveness in a 4-
second window directly following the event.

6.4 Feature extraction
The baseline values of many of our environmental sensors�uctu-
ate heavily throughout the day (e.g., the air pressure readings are
dependent on the ambient air pressure outside). As we still want to
capture transient changes caused by events, we have to compute
changes relative to the current baseline. To do so, we compute the
features in the following manner. For each 0-sample and each 1-
sample (see Section 6.1), we construct the event signature window
as described in the previous section using parameters t+ and t�.
As the current baseline, we subtract the mean of the preceding
window with the same length as the event signature window. We
then compute� ve statistical features (min, max, mean, sum, and
standard deviation) on the corresponding event signature window
on the data of every sensor.

Following the feature extraction, we measure each feature’s qual-
ity (i.e., distinctiveness). This is needed for the computation of ideal
window sizes for each sensor (see following subsection) and feature
selection. We use relative mutual information (RMI) as a quality
measure. RMI is de�ned as

RMI(e�ent , F) =
H (e�ent) � H (e�ent |F)

H (e�ent)

where H(A) is the entropy of A and H(A|B) denotes the entropy of
A conditioned on B. e�ent denotes the ground truth for this sample
(i.e., 0 or 1) and is therefore discrete. However, the feature space

Session 7A: Internet of Things CCS ’19, November 11–15, 2019, London, United Kingdom

1462

for most features is continuous. In order to precisely determine the
conditional entropy, binning would be required to discretise the
features. However, the reported RMI would depend on the binning
strategy and number of bins (with more bins leading to a higher
calculated RMI). To avoid this problem, we use the non-parametric
approach proposed by Ross et al. to estimate the mutual infor-
mation between the discrete event ground truth and continuous
features [28].

Due to the small number of 1-samples and the resulting class
imbalance, features often show a comparatively high RMI in the
development set without actually providing systematic information
about the event. This is particularly critical as feature selection is
performed on a small subsample of the entire data. Due to timed
automated events, events sometimes occur at the same time. While
this is not systematic, even a small number of overlaps can lead to
overstated RMI. In order to limit the e�ect of noisy features and
reduce model training time, we select features with an RMI above
40%.

6.5 Classi�cation and metrics
We use a binary linear support vector machine (SVM) as our classi-
�er. We choose a linear kernel due to the large amount of training
data (roughly 600,000 samples) and high number of features. The
classi�er is parametrised by the penalty parameter C. Since the two
classes (events and non-events) are highly imbalanced, we assign
di�erent values of C proportional to the fraction of samples for each
class. This avoids biasing the classi�er towards the more common
class (i.e., non-events).

Instead of using the actual binary classi�er decision, we calculate
each sample’s distance to the decision boundary. This allows us
to then de�ne a threshold on this distance to control the tradeo�
between detection rate (DR) and false alarm rate (FAR). The DR
is de�ned as the fraction of 0-samples that are correctly classi�ed
(i.e., the probability of detecting a spoo�ng attack conducted at a
random time). Conversely, the false alarm rate is de�ned as the
fraction of wrongly classi�ed 1-samples (i.e., actual events that are
wrongly classi�ed as spoofed). We combine both metrics into the
equal error rate (EER), which is the error rate at a threshold where
(FAR = 1 � DR). Since the relatively limited number of 1-events
leads to equally limited number of possible FARs, we use geometric
interpolation (see Figure 7) to obtain the EER.

6.6 Opportunistic attacker
As outlined in our threat model (Section 4), we consider two kinds of
attackers: zero-e�ort attacker and opportunistic attackers. The zero-
e�ort attacker chooses their moment for event spoo�ng randomly
without consideration for the physical environment. Conversely,
the opportunistic attacker uses information about the veri�cation
sensors to spoof at times when they are particularly likely to be
successful.

The goal of the opportunistic attacker is to predict whether a
given point in time will be misclassi�ed by the veri�cation system
(i.e., at what time a spoofed event will be incorrectly classi�ed
as genuine). Intuitively, the attacker could copy the veri�cation
system since they have access to sensor readings and ground truth.
Based on this system, they will learn the system’s score for each

Table 6: Maximum RMI for each event within the di�erent
sensor groups. Sensor group labels are given in Table 2.

Event A G M P H T L PM AQ S R TC

Co�ee machine used 87 67 4 12 11 24 82 100 75 37 9 37

Doorbell used 43 50 45 30 25 33 65 37 70 38 74 24

Door closed 99 96 96 88 41 69 99 35 41 100 66 53

Door opened 85 93 96 75 36 61 86 41 57 80 55 17

Fan o� 24 11 2 2 2 53 9 100 12 62 27 11

Fan on 25 5 2 2 2 21 7 100 42 47 41 10

Fridge closed 87 77 5 98 54 92 99 45 33 73 61 67

Fridge opened 64 67 3 21 47 96 99 49 38 66 57 67

Light o� 55 47 40 36 7 25 100 55 26 79 65 28

Light on 51 56 51 41 6 31 100 57 24 32 62 47

PC o� 10 7 3 6 3 21 6 99 24 6 77 9

PC on 15 11 5 6 5 30 7 100 49 8 6 6

Camera o� 7 5 3 4 4 7 18 99 17 5 40 5

Camera on 4 4 6 3 2 9 16 99 18 5 40 7

Radiator o� 10 24 5 14 5 41 25 57 10 21 19 16

Radiator on 12 8 8 9 7 32 15 76 4 12 14 79

Screen o� 6 3 4 5 3 14 22 99 15 4 38 4

Screen on 6 4 2 3 6 15 17 100 18 8 44 7

Window shade down 90 79 5 11 7 23 12 93 51 24 12 40

Window shade up 81 65 6 4 10 22 17 100 53 23 55 51

Window closed 16 20 11 19 5 12 91 64 35 75 95 34

Window opened 9 32 11 45 4 11 96 65 41 99 83 36

potential point in time. However, this will only grant them posterior
knowledge about opportunities (i.e., they will learn that a good
spoo�ng opportunity would have been one second ago). In order to
judge whether a time t is suitable for spoo�ng, the attacker can only
use information collected up to time t. To re�ect this limitation, we
build an attacker surrogate model as follows:

The attacker� rst uses the development dataset to calculate the
ideal windows for each sensor. In line with the attacker’s limitations,
they restrict the t+ parameter to non-positive values. Intuitively,
this means that only sensor information collected before the “event”
is used. They then follow the same methods as the actual system
(i.e., feature selection and classi�er training). Ideally, the scores
produced by the surrogate model will be correlated with those
of the actual system. The attacker can then continuously classify
samples when no events are happening to� nd an opportunity (i.e.,
a sample that scores well on their model). The attacker can then
de�ne a threshold for a spoo�ng attack. This threshold controls the
tradeo� between success rate (i.e., the probability the system will
judge the attacker’s spoo�ng as a genuine event) and the waiting
time until an opportunity is found.

7 RESULTS
Feature distinctiveness. Table 6 shows the distinctiveness of fea-
ture groups for each event. Each cell shows the maximum RMI
within the sensor group. Most results are relatively intuitive: Ac-
celerometers detect door events, window shade events and the use
of the co�ee machine. Power meters primarily detect the devices
they are connected to. Light sensors detect both toggling of the
light switch and events that lead to obscuring the sensor (e.g., a
door opening in the proximity of the sensor). Signal strength (RSS)

Session 7A: Internet of Things CCS ’19, November 11–15, 2019, London, United Kingdom

1463

100 100
77

Accelerometer Sound pressure Air pressure Thermal camera

98

100

54

36 99

96

4

4

98

(a)Most distinctive sensor based on their position. Thenumber
given for each sensor is their maximum RMI in %.

36
41

98

100

69

10

4

3

31

36

(b) Relative importance of accelerometer sensors depending
on their position. Numbers are maximum RMI in %.

Figure 6: Type and quality of most distinctive sensor depending on its position

changes are particularly useful to detect window events. This is
a consequence of windows only being operated manually. To do
so, the user obscures the line of sight (LOS) between the sensor
and the router, which causes predictable RSS changes. RSS changes
are not only caused by LOS breaks, but also interference which
makes RSS useful to detect the PC’s power state changes. Note,
that RMI is used to determine the distinctiveness of each individual
sensor. Hence, the system is not dependent on a speci�c sensor
con�guration or deployment, but is instead able to learn relevant
sensors in situ.

One of the more surprising results is the high distinctiveness
of power meter features for virtually all events. Naturally, this
e�ect is expected for devices that are attached to individual power
meters (i.e., fan, fridge, PC, screen, window shade, camera). With
the exception of the fridge, the power meters pick up the spike in
power once the device is turned on. When the fridge is opened and
the temperature rises, the increased cooling leads to a (delayed)
increase in power consumption. We observed a voltage spike in all
power meters that occurs when the light is turned on or o�which
explains the relatively high RMI for these two events. This e�ect
is particularly pronounced when the overall electrical activity is
low. These results show that power meters are useful even beyond
detecting state changes of their respective devices.

Figure 6a shows how di�erent sensors contribute to detecting
the door closed event. Sound pressure sensors achieve very high
RMI that is independent from the sensor’s position. Interestingly,
the air pressure sensor inside the fridge achieves a similarly high
RMI. Our inspection of the raw signal suggests that the door closing
actually causes a pressure change inside the fridge and that the
reading is not a technical artifact (such as vibration).

Figure 6b shows the importance of accelerometers in detecting
the door closed event depending on the position of the individual
sensor. This importance is not purely down to distance from the
door. In fact, sensors on the lock side of the door show higher RMI
despite being further away. Unlike sound pressure, the accelerome-
ter signal goes virtually undetected at the other end of the room.

Table 7: Error rates for the detection of di�erent events.
Numbers in brackets signify the absolute number of unde-
tected events.

Event #Events EER DR(FAR=0) FAR(DR=99.9%)

Co�ee Machine used 20 0.00 100.00 0.00 (0)
Door closed 177 0.00 100.00 0.00 (0)
Door opened 179 0.00 100.00 0.00 (0)
Fan on 165 0.00 100.00 0.00 (0)
Fridge closed 29 0.00 100.00 0.00 (0)
Fridge opened 28 0.00 100.00 0.00 (0)
Light o� 26 0.00 100.00 0.00 (0)
PC on 33 0.00 100.00 0.00 (0)
Screen on 70 0.00 100.00 0.00 (0)
Camera on 70 0.01 99.99 0.00 (0)
Light on 25 0.02 99.98 0.00 (0)
Camera o� 69 0.10 99.90 0.00 (0)
Fan o� 162 0.17 99.82 0.00 (0)
Screen o� 105 0.29 99.71 0.00 (0)
PC o� 35 0.39 99.61 0.00 (0)
Radiator on 19 0.97 98.93 5.26 (1)
Window opened 24 4.01 0.35 4.17 (1)
Window shade up 33 11.39 0.28 15.15 (5)
Window shade down 32 12.04 0.19 12.50 (4)
Doorbell used 27 15.06 0.36 55.56 (15)
Window closed 24 15.24 17.63 33.33 (8)
Radiator o� 21 49.41 7.65 100.00 (21)

Classi�cation results. The classi�cation results are shown in Ta-
ble 7. For each event, we list its EER, the detection rate at a threshold
that does not cause false alarms and the false alarm rate at 99.9% de-
tection rate. For 9 out of 22 events, we achieve perfect classi�cation
(i.e., an EER of 0% or a 100% detection rate at 0% FAR). Some of these
events (e.g., door events) draw this good performance from being
detected by a multitude of sensors. Others (such as light events)
have few, but extremely reliable features. In order to more closely
investigate events with less ideal performance (such as window
events), we show their ROC curve in Figure 7. The ROC shows the

Session 7A: Internet of Things CCS ’19, November 11–15, 2019, London, United Kingdom

1464

Figure 7: ReceiverOperatingCharacteristics (ROC) curve for
di�erent events. Here we only show events with an EER sig-
ni�cantly higher than 0 (well-classi�ed events with an EER
of 0 are a� at line at the top).

Figure 8: Score correlation between the legitimatemodel and
the opportunistic attacker’s surrogate model. The dashed
grey line is the linear regression line and the solid black line
shows the 99% detection rate cut- o�.

tradeo� between DR and FAR. For most events shown in the curve
it is evident that few instances of the event were assigned a very
poor classi�cation score. If the threshold is adjusted to (incorrectly)
reject them as spoofs, the detection rate almost instantly jumps to
100%. This is most likely due to the event being triggered in a way
that is very di�erent from the training data (e.g., a person opening a
window only an inch). This is a natural consequence of our largely
uncontrolled experimental design.

Opportunistic attacker.The goal of the attacker’s surrogatemodel
(see Section 6.6) is to accurately predict moments when a spoofed
event will be incorrectly veri�ed by the system (we call these mo-
ments opportunities). We� rst measure the quality of the surrogate
model by measuring the correlation between the scores produced
by the surrogate model and those of the legitimate model. If this
correlation is high, the attacker is more likely to correctly identify
opportunities. A visualization of this correlation for the window

Table 8: Correlation between the scores produced by the le-
gitimate model and the attacker’s surrogate model.

Event r-value p-value

Door closed 0.29 0.00
Fridge closed 0.26 0.00
Window closed 0.21 0.00
Screen o� 0.18 0.00
Window opened 0.11 0.00
Doorbell used 0.11 0.00
Door opened 0.10 0.00
Screen on 0.02 0.00
Radiator o� 0.01 0.00
Radiator on 0.01 0.00
Window shade up 0.01 0.00
Co�ee Machine used 0.00 0.04
Window shade down 0.00 0.09
PC o� 0.00 0.25
Fridge opened 0.00 0.78
PC on 0.00 0.98
Camera o� -0.00 0.14
Fan on -0.00 0.88
Camera on -0.01 0.00
Fan o� -0.04 0.00
Light o� -0.04 0.00
Light on -0.11 0.00

open event is shown in Figure 8. It is evident that most opportuni-
ties (i.e., samples above the 99% DR cut-o�) score relatively highly
on the attacker’s model. A complete list of correlation coe�cients
(r-values) is given in Table 8. Door, fridge and window and screen
events show a particularly high correlation. For these events, we
show in Figure 9 how successful the attacker can be depending
on how conservatively they choose his opportunity threshold. For
the lowest threshold (corresponding to the highest-scoring 0.5% of
samples), the success rate increases from the baseline 1% to over
50% for the fridge closed event. While 0.5% would suggest an op-
portunity roughly every 200 samples, this is not true in practice
because opportunities do not arise randomly, but typically occur in
bursts. Table 9 shows an analysis of the median time an attacker
has to wait for an opportunity depending on the chosen threshold
value. For comparison, the zero-e�ort attacker achieves an average
1% success rate with no need to wait. Note that both Table 9 and
Figure 9 are computed for a� xed 99% DR to facilitate comparing
events with di�erent EERs.

This analysis shows that opportunities for most events are ex-
tremely di�cult to predict in a timely manner since their physical
event signatures almost exclusively follow the event itself. As a
result, the attacker could only detect the opportunity after it hap-
pened, at which point it will be too late to spoof an event. In addition,
the attacker can only be successful if there are any opportunities
at all. This means that for events with a 100% detection rate, the
attacker will always be unsuccessful.

Session 7A: Internet of Things CCS ’19, November 11–15, 2019, London, United Kingdom

1465

Table 9: Performance of the opportunistic attacker: For each
threshold, the table shows the median time until an oppor-
tunity is found (tto) and the corresponding success rate (SR).

th=0.5% th=1% th=5%

Event tto SR tto SR tto SR

Fridge closed 470 0.56 313 0.38 130 0.10
Screen o� 727 0.34 344 0.19 48 0.05
Window closed 1100 0.31 552 0.24 85 0.10
Door closed 1725 0.27 230 0.23 26 0.09
Fridge opened 2443 0.17 965 0.11 129 0.03
Light o� 1639 0.16 998 0.10 111 0.04
Doorbell used 6567 0.09 5823 0.07 2915 0.04
Fan o� 912 0.08 364 0.11 49 0.08
Light on 540 0.08 383 0.06 151 0.02
Window opened 413 0.04 178 0.03 43 0.02
Window shade up 440 0.03 193 0.02 29 0.01
Door opened 1584 0.02 980 0.02 91 0.02
Fan on 398 0.02 155 0.02 51 0.01
Co�ee Machine used 1694 0.01 1264 0.02 80 0.02
PC o� 267 0.01 135 0.01 30 0.01
PC on 258 0.01 128 0.01 26 0.01
Camera o� 230 0.01 114 0.01 25 0.01
Camera on 245 0.01 126 0.01 24 0.01
Radiator on 1091 0.01 331 0.01 58 0.01
Screen on 400 0.01 175 0.01 33 0.01
Window shade down 227 0.01 115 0.01 26 0.01
Radiator o� 595 0.00 224 0.01 44 0.01

Figure 9: Success rates of the opportunistic attacker for var-
ious thresholds. A higher thresholds leads to higher attack
success rate but increased wait time for an opportunity.

8 CONCLUSION
In this paper we have presented P�����, a system to automatically
verify smart home events based on their physical event signatures.
We verify 22 events using 48 veri�cation sensors and validate our
system on a real-world dataset collected over two weeks.

We show that most events are detected by a multitude of sensors,
which highlights that P����� can be used even with few o�-the-
shelf sensors already integrated in smart home devices. 9 out of 22
events achieve a near-perfect EER of 0.00% and 15 events achieve a
0% false alarm rate at a detection rate exceeding 99.9%.

We also formulate the notion of an opportunistic attacker that
attempts to predict opportunities (i.e., times when a spoofed event
will go undetected) based on veri�cation sensor data. This attacker

builds a surrogate event veri�cation model based only on data pre-
ceding each sample. We show that some events exhibit signatures
that precede or overlap with the event, which makes it possible
for the attacker to predict opportunities before they occur. We note
that spoo�ng opportunities for the fridge, window and door events
are easiest to� nd, although their high detection rate still makes an
attack very di�cult to execute.

We make our entire dataset available online to allow researchers
to build on our results.

ACKNOWLEDGMENTS
This work was supported by a grant from Mastercard and the
Engineering and Physical Sciences Research Council.

REFERENCES
[1] Abbas Acar, Hossein Fereidooni, Tigist Abera, Amit Kumar Sikder, Markus Miet-

tinen, Hidayet Aksu, Mauro Conti, Ahmad-Reza Sadeghi, and A. Selcuk Uluagac.
2018. Peek-a-Boo: I see your smart home activities, even encrypted! CoRR
abs/1808.02741 (2018). arXiv:1808.02741 http://arxiv.org/abs/1808.02741

[2] Noah Apthorpe, Dillon Reisman, Srikanth Sundaresan, Arvind Narayanan, and
Nick Feamster. 2017. Spying on the Smart Home: Privacy Attacks and Defenses
on Encrypted IoT Tra�c. CoRR abs/1708.05044 (2017). arXiv:1708.05044 http:
//arxiv.org/abs/1708.05044

[3] Home Assistant. 2019. Awaken your home. https://www.home-assistant.io/
[Online; accessed 12-May-2019].

[4] Bruhadeshwar Bezawada, Maalvika Bachani, Jordan Peterson, Hossein Shirazi,
Indrakshi Ray, and Indrajit Ray. 2018. Behavioral Fingerprinting of IoT Devices.
In Proceedings of the 2018 Workshop on Attacks and Solutions in Hardware Security
(ASHES). ACM, 41–50.

[5] Simon Birnbach, Richard Baker, and Ivan Martinovic. 2017. Wi-Fly?: Detecting
Privacy Invasion Attacks by Consumer Drones. In Proceedings of the 24th Annual
Network and Distributed System Security Symposium (NDSS).

[6] Z Berkay Celik, Patrick McDaniel, and Gang Tan. 2018. Soteria: Automated
IoT safety and security analysis. In 2018 USENIX Annual Technical Conference
(USENIX ATC 18). 147–158.

[7] Z Berkay Celik, Gang Tan, and Patrick McDaniel. 2019. IoTGuard: Dynamic
Enforcement of Security and Safety Policy in Commodity IoT. In Proceedings of
the 26th Annual Network and Distributed System Security Symposium (NDSS).

[8] Kaspersky Lab ICS Cert. 2018. Somebody’s watching! When cameras are
more than just ’smart’. https://ics-cert.kaspersky.com/reports/2018/03/12/
somebodys-watching-when-cameras-are-more-than-just-smart/ [Online; ac-
cessed 13-May-2019].

[9] Tamara Denning, Tadayoshi Kohno, and Henry M Levy. 2013. Computer security
and the modern home. Commun. ACM 56, 1 (2013), 94–103.

[10] Wenbo Ding and Hongxin Hu. 2018. On the Safety of IoT Device Physical Inter-
action Control. In Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security (CCS). ACM, 832–846.

[11] Earlence Fernandes, Jaeyeon Jung, and Atul Prakash. 2016. Security analysis
of emerging smart home applications. In 2016 IEEE Symposium on Security and
Privacy (S&P). IEEE, 636–654.

[12] Earlence Fernandes, Justin Paupore, Amir Rahmati, Daniel Simionato, Mauro
Conti, and Atul Prakash. 2016. FlowFence: Practical Data Protection for Emerg-
ing IoT Application Frameworks. In 25th USENIX Security Symposium, USENIX
Security 16, Austin, TX, USA, August 10-12, 2016. 531–548.

[13] Jun Han, Albert Jin Chung, Manal Kumar Sinha, Madhumitha Harishankar, Shijia
Pan, Hae Young Noh, Pei Zhang, and Patrick Tague. 2018. Do you feel what I
hear? Enabling autonomous IoT device pairing using di�erent sensor types. In
2018 IEEE Symposium on Security and Privacy (S&P). IEEE, 0.

[14] Grant Ho, Derek Leung, Pratyush Mishra, Ashkan Hosseini, Dawn Song, and
David Wagner. 2016. Smart locks: Lessons for securing commodity internet of
things devices. In Proceedings of the 11th ACM on Asia conference on computer
and communications security (AsiaCCS). ACM, 461–472.

[15] Apple Inc. 2019. Apple HomeKit: Your home at your command. https://www.
apple.com/uk/ios/home/ [Online; accessed 12-May-2019].

[16] SmartThings Inc. 2019. Samsung SmartThings. https://www.smartthings.com/
[Online; accessed 12-May-2019].

[17] Yunhan Jack Jia, Qi Alfred Chen, Shiqi Wang, Amir Rahmati, Earlence Fernandes,
ZMorleyMao, and Atul Prakash. 2017. ContexIoT: Towards Providing Contextual
Integrity to Appi�ed IoT Platforms. In Proceedings of the 24th Annual Network
and Distributed System Security Symposium (NDSS).

[18] Constantinos Kolias, Georgios Kambourakis, Angelos Stavrou, and Je�rey Voas.
2017. DDoS in the IoT: Mirai and Other Botnets. Computer 50, 7 (2017), 80–84.

Session 7A: Internet of Things CCS ’19, November 11–15, 2019, London, United Kingdom

1466

http://arxiv.org/abs/1808.02741
http://arxiv.org/abs/1808.02741
http://arxiv.org/abs/1708.05044
http://arxiv.org/abs/1708.05044
http://arxiv.org/abs/1708.05044
https://www.home-assistant.io/
https://ics-cert.kaspersky.com/reports/2018/03/12/somebodys-watching-when-cameras-are-more-than-just-smart/
https://ics-cert.kaspersky.com/reports/2018/03/12/somebodys-watching-when-cameras-are-more-than-just-smart/
https://www.apple.com/uk/ios/home/
https://www.apple.com/uk/ios/home/
https://www.smartthings.com/

[19] Gierad Laput, Yang Zhang, and Chris Harrison. 2017. Synthetic sensors: Towards
general-purpose sensing. In Proceedings of the 2017 CHI Conference on Human
Factors in Computing Systems. ACM, 3986–3999.

[20] Markus Miettinen, N Asokan, Thien Duc Nguyen, Ahmad-Reza Sadeghi, and
Majid Sobhani. 2014. Context-based zero-interaction pairing and key evolution
for advanced personal devices. In Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security (CCS). ACM, 880–891.

[21] Markus Miettinen, Samuel Marchal, Ibbad Hafeez, N Asokan, Ahmad-Reza
Sadeghi, and Sasu Tarkoma. 2017. IoT Sentinel: Automated device-type identi�-
cation for security enforcement in IoT. In 2017 IEEE 37th International Conference
on Distributed Computing Systems (ICDCS). IEEE, 2177–2184.

[22] Ben Nassi, Raz Ben-Netanel, Adi Shamir, and Yuval Elovici. 2018. Game of Drones
- Detecting Streamed POI from Encrypted FPV Channel. CoRR abs/1801.03074
(2018). arXiv:1801.03074 http://arxiv.org/abs/1801.03074

[23] Dang Tu Nguyen, Chengyu Song, Zhiyun Qian, Srikanth V Krishnamurthy,
Edward JM Colbert, and Patrick McDaniel. 2018. IotSan: fortifying the safety
of IoT systems. In Proceedings of the 14th International Conference on emerging
Networking EXperiments and Technologies (CoNEXT). ACM, 191–203.

[24] openHAB Foundation e.V. 2019. openHAB: empowering the smart home. https:
//www.openhab.org/ [Online; accessed 12-May-2019].

[25] Amir Rahmati, Earlence Fernandes, Kevin Eykholt, and Atul Prakash. 2018. Tyche:
A risk-based permission model for smart homes. In 2018 IEEE Cybersecurity
Development (SecDev). IEEE, 29–36.

[26] Eyal Ronen and Adi Shamir. 2016. Extended functionality attacks on IoT devices:
The case of smart lights. In 2016 IEEE European Symposium on Security and Privacy
(EuroS&P). IEEE, 3–12.

[27] Eyal Ronen, Adi Shamir, Achi-Or Weingarten, and Colin O’Flynn. 2017. IoT goes
nuclear: Creating a ZigBee chain reaction. In 2017 IEEE Symposium on Security
and Privacy (S&P). IEEE, 195–212.

[28] Brian C. Ross. 2014. Mutual information between discrete and continuous data
sets. PLoS ONE 9, 2 (Feb. 2014), e87357. https://doi.org/10.1371/journal.pone.
0087357

[29] Dominik Schürmann and Stephan Sigg. 2013. Secure communication based on
ambient audio. IEEE Transactions on mobile computing 12, 2 (2013), 358–370.

[30] Sandra Siby, Rajib Ranjan Maiti, and Nils Ole Tippenhauer. 2017. IoTScanner:
Detecting Privacy Threats in IoT Neighborhoods. In Proceedings of the 3rd ACM
International Workshop on IoT Privacy, Trust, and Security. ACM, 23–30.

[31] Vijay Sivaraman, Dominic Chan, Dylan Earl, and Roksana Boreli. 2016. Smart-
phones attacking smart-homes. In Proceedings of the 9th ACM Conference on
Security & Privacy in Wireless and Mobile Networks. ACM, 195–200.

[32] Yuan Tian, Nan Zhang, Yueh-Hsun Lin, XiaoFeng Wang, Blase Ur, Xianzheng
Guo, and Patrick Tague. 2017. Smartauth: User-centered authorization for the
internet of things. In 26th USENIX Security Symposium (USENIX Security 17).
361–378.

[33] Qi Wang, Wajih Ul Hassan, Adam Bates, and Carl Gunter. 2018. Fear and Logging
in the Internet of Things. In Proceedings of the 25th Annual Network and Distributed
System Security Symposium (NDSS).

[34] Wei Zhang, Yan Meng, Yugeng Liu, Xiaokuan Zhang, Yinqian Zhang, and Haojin
Zhu. 2018. HoMonit: Monitoring Smart Home Apps from Encrypted Tra�c. In
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security (CCS). ACM, 1074–1088.

Session 7A: Internet of Things CCS ’19, November 11–15, 2019, London, United Kingdom

1467

http://arxiv.org/abs/1801.03074
http://arxiv.org/abs/1801.03074
https://www.openhab.org/
https://www.openhab.org/
https://doi.org/10.1371/journal.pone.0087357
https://doi.org/10.1371/journal.pone.0087357

	Abstract
	1 Introduction
	2 Background
	2.1 Smart home systems
	2.2 Related work

	3 System Model
	4 Threat Model
	5 Experimental Design
	5.1 Overview
	5.2 Data collection
	5.3 Ethical concerns

	6 Methods
	6.1 Data labelling
	6.2 Dataset division
	6.3 Sensor window selection
	6.4 Feature extraction
	6.5 Classification and metrics
	6.6 Opportunistic attacker

	7 Results
	8 Conclusion
	Acknowledgments
	References

