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Abstract-In this work, we study the detection of Fast-Flux 
Service Networks (FFSNs) using DNS (Domain Name System) 
response packets. We have observed that current approaches do 
not employ a large combination of DNS features to feed into 
the proposed detection systems. The lack of features may lead 
to high false positive or false negative rates triggered by benign 
activities including Content Distribution Networks (CDNs). In 
this paper, we study recently proposed detection frameworks to 
construct a high-dimensional feature vector containing timing, 
network, spatial, domain name, and DNS response information. 
In the detection system, we strive to use features that are delay
free, and lightweight in terms of storage and computational 
cost. Feature sub-spaces are evaluated using a C4.5 decision tree 
classifier by excluding redundant features using the information 
gain of each feature with respect to each class. Our experiments 
reveal the performance of each feature subset type in terms of 

the classification accuracy. Moreover, we present the best feature 
subset for the discrimination of FFSNs recorded with the datasets 
we used. 

Index Terms-network security, Fast-flux Service Networks 
(FFSNs), feature selection, classification 

I. INTRODUCTION 

Fast-flux service networks continuously update their DNS 
entries at regular intervals, i.e., fast IP changing hosts [1]. 
The repeated and rapid IP change in DNS A and/or DNS 
NS resource records conceals the actual location of malicious 
servers, and helps them evade blacklists and take downs. This 
process also adds an extra layer to the FFSNs' communication 
structure to increase its resilience and anonymity in a wide 
variety of malicious activities including phishing (e.g., via 
spam e-mail) and malware hosting. On the other hand, CDNs 
which show similar characteristics to FFSNs (i.e., referred as 
illegitimate content distribution networks) also associated with 
multiple records for load balancing and regional server assign
ments to increase responsibility and availability [2]. Hence, 
the problem of reliable discrimination of them has posed 
additional technical difficulties, and requires comprehensive, 
in-depth analysis of DNS feature space. 

The principal network-based methods to detect FFSNs ei
ther rely on passive DNS analysis [3] used to discover a 
domain name participated for malicious operations, or con
secutive DNS query packets [4], [5], or DNS server response 
duration [6]. Algorithmically generated domain names have 
also been exploited to detect domain fluxing by botnets 
(e.g., [7]). Such textual analysis may give the first alarm 
as a sign of domain fluxing. These detection methods are 
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imperfect, e.g., they may suffer from high detection latency 
(i.e., extracting features as a timescale greater than Time 
To Live (TTL), or multiple DNS lookups) or false positives 
detected by utilizing imperfect and insufficient features. 

The work presented here is related to the detection of 
FFSNs, in particular, by jointly building timing, domain name, 
spatial, network and DNS answer features which are extracted 
from the first DNS response packet. We consider many rather 
than a few features and also their combinations which are 
constructed by surveying the recent literature. The main aim of 
this survey is to study and analyze the benefits of the features 
and also, in some cases, the necessity of applying joint feature 
subsets. We provide an overview of the various feature subsets 
to be used for classification. We illustrate them by highlighting 
the efforts done by the authors in developing novel procedures, 
and analyze them in terms of their discrimination power. 

In this paper, the detection of FFSNs is purely based on the 
DNS request and the corresponding response packets collected 
from a recursive DNS server. Unlike recent FFSN detection 
proposals, our objective is to build a feature pool which 
may increase the detection of FFSNs. Some of the features 
require additional operations such as WHOIS messages, IP 
Coordinate Database, and a list of ground-truth labeled benign 
domain names. These operations add an additional delay to 
the detection, however, do not consider consecutive DNS 
lookups that take TTL value of each domain into account 
or take several minutes/hours to collect. Our objective is to 
study the detection of FFSN activity using various feature sets 
by classification. Specifically, we construct a 19-dimensional 
feature vector, and evaluate the performance of each subset of 
features based on its accuracy, and assess the feature space 
in order to find an optimal feature subset of the constructed 
feature vector. Our experiments help us to characterize each 
feature for the discrimination of FFSNs from benign networks 
by assessing each feature subset. 

The remainder of this paper is organized as follows: In 
Section II, we describe our feature space and the DNS features 
employed. In Section III, the feature generation procedure, 
detection system and the way the datasets were acquired and 
processed are described. In Section IV, we present detailed 
analysis of classification results for each subset of the feature 
space. Finally, we summarize the results and give future 
research directions in Section V. 
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TABLE I: FEATURE SET OF FFSN DETECTION SYSTEM 

Set Type 
I 

Subset 
I 

Features 
Name 

Number of unique A records 
DNS Answer-based <\>1 Number of NS records 

DNS packet size 
TC (Tnmcated) Flag is set 
Edit Distance 

Domain name-based <\>2 KL (Kullback-Leibler) Divergence (unigrams and bigrams) 
Jaccard Index (unigrams and bigrams) 
Time Zone Entropy of A records 

Spatial-based <\>3 Time Zone Entropy of NS records 
Minimal service distances (mean and standard deviation) 

Network-based <\>4 Number of distinct autonomous systems 
Number of distinct networks 
Round Trip Time of DNS request 

Timing-based <\>5 Network delay (mean and standard deviation) 
Processing delay (mean and standard deviation) 
Document fetch delay (mean and standard deviation) 

II. FEATURE SELECTION 

In our framework, we split the feature set into five categories 
according to the data collection method: DNS answer, domain 
name, spatial, network, and timing features as presented in 
Table I. The subsections in this section summarize the subsets 
of features, and as well as illustrate the complexity and 
additional operations related to the features. 

A. DNS Answer-based Features 

DNS answer-based features are computed, without any 
additional cost, by directly inspecting the fields of the DNS 
response packets. The cardinality of these features is expected 
to be large for FFSNs and small for benign domains. These 
features have been widely applied [4], [5], [8]. IP and NS 
record diversity may still have discrimination power in single 
lookup; as the count of these features increases, a higher prob
ability of the FFSN detection is observed. In our experiments, 
we also check if DNS-packet flags such as TC (Truncated) flag 
are set or not. Whenever the TC flag set to 1 in a response 
packet, it implies that the response cannot fit in 512-byte 
limit of a UDP packet; so the client will need to launch an 
additional DNS request with a TCP query [9]. However, we 
have seen a couple of TC flags set DNS responses in our 
experiments while querying FFSN domains. Hence, we do not 
include it as a feature; instead, it may be used as a filtering 
feature for further analysis. On the other hand, DNS packet 
size which is an important metric includes both DNS sections 
of question, answer and additional records could be a good 
discriminator as a whole or separately for each record. Since 
a number of A and NS records and domain name features 
are closely related with the DNS packet size, and not strongly 
dependent on mimicry attacks that allows botmasters to avoid 
detection [10], we exclude DNS packet size from our feature 
space. However, more sophisticated classifiers may be used to 
exploit dependencies between size and sequence information 
of packets as proposed in [11]. 

B. Domain name-based Features 

In particular, domain name-based features are designed 
to detect algorithmically generated domain names (e.g., by 
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the domain generation algorithm (DGA) [12]). However, our 
assumption is that FFSNs use a long sequence of candi
date domain names and will tend to use distributions for 
letters/syllables/n-grams that do not closely match the true 
distribution of valid domain names. For that reason, domain
level textual features may improve the detection. Hence, we 
calculate the similarity and divergence metrics between a 
given set of domain names. First we build a list of benign 
domain names (XI ,X2,X3, . . .  ,xn ) over a fixed time window, 
and then we evaluate the average distance/similarity metric of 
given (malicious or benign) domain name under scrutiny. Our 
calculation requires a set of benign domain names in order to 
generate the metrics (see Section III-A for more information), 
i.e., a whitelist of domains forming "non-malicious dataset". 
For each domain name in the datasets, we consider metrics us
ing on second level domain (SLD) field, i.e., a.b.example.com 
is reduced to example. The metrics we use in our calculations 
are similar to those of [7], where the authors use them 
for a first alarm to indicate domain fluxing in a network 
targeting recently developed botnets such as Torpig, Karaken 
and Conficker. The authors showed that these metrics lead to 
a good detection of algorithmically generated domain names. 

Let d1 and d2 be two probability distributions of a discrete 
random variable where d1 is for set of whitelist domain 
names and d2 is the given domain name either FFSN or 
benign domain name. First we employ Kullback-Leibler (KL) 
divergence of unigram and bigram distributions, 

We use the back-off smoothing method [13] in order to allow 
operation on a full set of random variables occurring in domain 
space. 

Secondly, we can calculate the Jaccard Similarity, 
SIM(X,Y) = IXnYI/IXuYI, between sample datasets X and 
Y. It is defined as the size of the intersection of the unigrams 
and bigrams of domain names divided by the size of their 
union. The result ranges from no unigrams or bigrams in 
common to one, which means that the given domain names 
are identical. Obviously, we expect that given benign domain 
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URLs have a higher similarity than FFSN domain names. 
Finally, Levenshtein Edit Distance of two domain names S1 
and S2 is calculated by finding the minimum number of edit 
operations required to transform Sl into S2. The edit operations 
allowed are inserting a character into a string, deleting a 
character from a string, or replacing a character of a string 
by another character. 

C. Spatial-based Features 

Recently, [8] proposed two spatial metrics to provide a 
delay-free FFSN detection mechanism. Given the list of IP 
addresses of A and NS records, authors map the IP ad
dresses into spatial distribution of these records to assess 
the uniform distribution degree of malicious hosts. Given an 
address set Q, each IP address is mapped to a coordinate 
C(Q) = < Cl(Q),C2(Q) > where Cl(Q) and C2(Q) map to 
the latitude and longitude, respectively. Then, each IP address 
in C(Q) is transformed to GMT Time Zones, and finally Time 
Zime Entropy (TZE) is defined by 

TZE(C(Q)) = - L (M(C(Q))/IQI)(Iog(M(C(Q)/IQI))), 
IEGMT 

where M is the number of times C(Q) located in the tth time 
zone for the given hosts. 

TZE may be ineffective for CDNs since CDNs may have 
FFSN-like spatial distribution. For this reason, the authors 
defined the average and the standard deviation of minimal 
service relationship estimator as a second feature. Euclidean 
distance, qmm', is calculated from each IP address in the answer 
section, qm, to the each NS IP address in the additional section, 
qm', as a "service" distance. Then the average and the standard 
deviation of the minimum service distances are designated 
features which are expected to help discriminating CDNs from 
FFSNs depending on the assumption that CDNs may have 
closer spatial service relationship than FFSNs. 

D. Network-based Features 

Similar to the spatial-based features, network-based features 
identify the number of associated networks and autonomous 
system numbers (ASNs) of the IP addresses in A records. [5] 
showed that benign hosts are mostly located in a circumscribed 
geographical area and owned by the same company and are 
all members of the same autonomous system. Compared to 
the spatial-based features which require an additional look
up of an up-to-date GEOIP database, network-based features 
require WHOIS command to extract the related feature values. 
Furthermore, [14] showed that ASNs together with spatial 
characteristics respond well to identify potential FFSNs. 

E. Timing-based Features 

The strength of the timing-based features relies on the as
sumption that FFSNs may have a single associated IP address. 
Although, FFSNs often consist of only a few bots, timing 
based features may well discriminate the FFSNs. However, 
requirement of HTTP packets incurs additional overhead, 
especially when the traffic load is high. In addition, while 
constructing dataset, only active FFSN URLs are processed 
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in order to make the timing features consistent with the other 
feature sets. In [6], the authors proposed three timing-based 
metrics as follows: 1) network delay defined as time between 
HTTP GET request and TCP SYN+ACK packet (i.e., cap
turing network congestion), 2) processing delay defined as 
the time to process a dummy HTTP request (i.e., workload 
of a server), and 3) document fetch delay defined as time 
required to fetch a webpage. Our system monitors the packet 
exchanges between the client and the server, and extracts 
these features on the fly. In addition to these features, we 
also identified the Round Trip Time (RTT) as a promising, 
and not strongly dependent on multiple IP addresses. Since 
processing delay is also based on the subtraction of network 
RTT and application level RTT, we exclude RTT from our 
feature set. In our calculations, in order to get consistency in 
delay metrics, all computations are the averages of the total 
of three connection attempts, and then the overall average and 
the standard deviation of the delay metrics are calculated. 

III. SY STEM OVERVIEW 

A. DNS Data Collection 

We have collected URLs from ATLAS Fast-Flux database1 

and FastFlux Tracker2 during the period of 4 months (from 
October 2012 to January 2013). Overall, we were able to 
collect 476 domains as fast-flux and 1,853 as benign classes. 
During the web page retrieval and DNS queries, we dissect 
each DNS packet response with modified version of the tshark 
[15] libraries before feeding to our detection system. 

In order to compare the textual differences of domain
based features between FFSNs recorded for the dataset we 
used and the recent traditional Botnets such as Conficker, 
Torpig and Kraken, we collected botnet domain names from 
Pc Tools3, and Damballa4. Note that except for Kraken botnet, 
other botnets utilize domain generation algorithm (DGA) to 
construct a list of the domain names as a rallying host 
computed from the predefined algorithms embedded to binary 
code of the bots independently until rallying host provides 
a response (e.g., Torpig uses DGA by seeding with the 
current date and a numerical parameter [12]). Kraken botnets 
use more complicated methods by matching the frequency 
of occurrences of vowels, consonants and concatenating the 
domain names with suffixes [7]. We also construct a whitelist 
of domain names to measure distance and similarity metrics 
between FFSNs and non-malicious domain names. Hence we 
collect as a total of over 5000 domain names from Alexa Top 
Global Sites5 and Google most visited sites6. Some of the 
features in our feature space require additional database and 
operations each listed along with the complexity in Table II. 

I http://atlas.arbor.net/ 
2http://dnsbl.abuse.ch/fastftuxtracker.php 
3https://www.pctools.com 
4https:llwww.damballa.com 
5http://www.alexa.com 
6http://www.google.com/adplanner/static/toplOOO/ 
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TABLE II: COMPLEXITY AND A DDITIONAL OPERATIONS OF 
FEATURE SUBSETS 

Operations Complexity Additional Requirements 

DNS Answer-based 

Packet Analysis O(N) -

Domain-based 

KL Divergence O(ND) 
Jaccard lndex O(ND'W) Whitelist of benign domain names 

Edit Distance O(N'JY) 
Spatial-based 

Database Lookup O(NM) IP Coordinate Database 

Network-based 

WHOlS Processing O(N) WHOlS command 

Timing-based 

Delay Calculation O(N) HTTP Requests 

NotatIOn 

N Number of test domain names 

W Number of domain names in whitelist 

D Max domain name size 

M IP coordinate size 

B. The Classifier 

In this work the C4.5 algorithm [16] is used for classifi
cation. The C4.5 algorithm creates a decision tree, where at 
each node of the tree the feature(s) with normalized largest 
information gain is used to split the data into sub-groups, 
ending at the leaf nodes. A decision tree should have the 
property that at each leaf node, a strong majority of the 
samples belong to one class, which is also chosen as the 
predicted class for samples belonging to that leaf node. 

The C4.5 algorithm uses two types of tests for each feature 
X. The equality test X is applied for discrete attributes, and 
X � e is applied for numeric attributes where e is a constant 
threshold. The candidate threshold values are specified by 
sorting the distinct values of X that appear in training set by 
obtaining a threshold between the adjacent values. 

At each step of the algorithm, one feature is selected from 
the set of current leaf nodes with the attribute split that will 
yield the greatest normalized information gain. With a given 
discrete class random variable C and binary split of feature X, 
normalized information gain of a leaf node is obtained as: 

( I ) - H(C) -H(qX) 
NIG CX -

H(C) , 
where H is Shannon's entropy, and H(C) is defined as: 

(1) 

H(C) = -LP(C = Ci) log2(p(C = c1)) (2) 
Cj 

and H(qX) is defined as: 

H(qX) = -LP(X=xJ)L�I' (3) 
} 

where �i is defined as p (C = cilX =x/) log2(p(C = cilX =x/)) 

In order to classify a given data sample, the leaf node to 
which the data sample belongs is found. This is performed by 
following the branches that the data sample satisfies, starting 
from the root and ending at a leaf node. The class of that node 
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associated at a leaf node with a sufficient high class purity 
becomes the predicted class. Moreover, the C4.5 algorithm has 
many options such as error-reduced pruning, avoiding over
fitting, and handling missing values. In our experiments, we 
use the subtree raising algorithm to overcome the overfitting 
problem. In this algorithm, a subtree from downward may be 
moved upwards towards the root of the tree to join with the 
parent node. Given a particular confidence, we find confidence 
limits, and we use that upper confidence limit as an estimate 
for the error rate of the node. An error estimate for a subtree 
is calculated as a weighted sum of error estimates for all its 
leaves and itself. If the node's estimated error is less than the 
combined error estimate of its leaves, they are pruned away. 

In our experiments, the classification process of the C4.5 
algorithm is treated as a binary problem, where classes are 
labelled as benign and fast-flux. The confidence level is set 
to 0.25 and the minimum number of instances per leaf is 
set to 2 for pruning. As the decision tree classifier builds a 
tree during the training phase, the features that best separate 
the benign and fast-flux classes can be clearly observed. 
The attributes resulting in the highest information gain are 
considered to have more discrimination power, thus the results 
obtained can be used as a filter to rank features according to 
their calculated information gain values. Finally, with a given 
accuracy threshold, a set of features can be decided with the 
best discrimination performance of our dataset. 

IV. EXPERIMENTAL RE SULT S 

In order to find the best subset of our features that result 
in minimum error rate, we use the 10-fold cross validation 
approach by dividing the dataset into 10 folds of approxi
mately equal size which have proportionally the same number 
of classes in all 10 folds. In Figure 1, the average values of 
accuracy, true positive rates (TPR) and false positive rates 
(FPR) on all 10 folds are presented for each subset and 
combination of all feature subsets. We observed that spatial 
(<1>3) feature set performs best, followed by network (<1>4), DNS 
answer (<1>J), domain name (<1>2) and timing (<1>5) feature sets. 
The ranked results for each feature subset by taking averages 
of information gain of each feature belong to that subset is 
presented in Figure 2. We observe that there is a linear rela
tionship between spatial, DNS answer and network features. 
The cardinality of IP addresses resolved for a given domain 
name connected to the distribution of both spatial and network 
based features, i. e., in general all feature pairs are statistically 
dependent and results in approximately same accuracy results 
as 98.8%, 97.7%, and 97.1%, respectively. The increase in 
accuracy is observed by correctly classifying CDNs that will 
be detailed in the sequel. When we jointly use all feature 
sets, the accuracy becomes 98.9%, and the predictions become 
insensitive to the timing and domain feature sets. However, 
this may not be the case for other classifiers. Accuracy may 
change e.g., by assuming that the features are conditionally 
independent given the class of origin and learning a model for 
the class conditional probability distribution of each feature or 
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using ensemble of classifiers with a voting procedure. 

In order to investigate the performance of the spatial-based 
features, we extracted the class-conditional feature histograms 
from benign and fast-flux datasets for the two highest in
formation gain ranked features (i.e., spatial distribution of A 
records and standard deviation of minimum service distance) 
as shown in Figure 3. We observe that distributions have a 
different range and form, and such differences do provide 
a foundation of discriminating fast-flux networks. Nearly all 
benign instances were associated with four or fewer A and NS 
records, while most of the fast-flux instances were associated 
with more A and NS records in one single DNS response 
packet. Even if FFSNs and CDNs are distributed over multiple 
networks and geographical locations, the IP addresses returned 
by CDNs have closer service distance. As a result, as expected, 
the use of service distance leverages the CDN detection and 
false positive rates decreases from 3.2% to 1.1 % compared 
with the use of only number of IP addresses in A and 
NS records. Our spatial experimental results obtained are in 
general similar to those obtained by [8] and [14]. It should be 
noted that in our implementations, IP-coordinate database is 
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well maintained for each query without any missing values. 
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The resulting accuracy, TP and FP rates of domain-name 
based features are 88.48%, 95.1 %, and 30.1 % respectively. In 
general, our experiments reveal that overall the KL Divergence 
outperforms others, followed by Jaccard index and then Edit 
distance. The scatter plot presented in Figure 4 shows the 
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Jaccard Index over bigram distributions of 90 test domains 
between benign and fast-flux domain names, as well as domain 
names extracted from traditional botnets. Note that fast-flux 
domains used in our experiments are all easy-to-remember, 
human readable and consist of at least 11 characters such as 
sportinghookup.com and jindpartnertoday.com, which adds an 
extra layer for textual detection. Even we observe that FFSN 
domain names do not closely match the true distribution for 
unigrams and bigrams compared to benign domain names, 
we believe that more sophisticated probability models can be 
adapted to evaluate the likelihood of a given domain name 
for estimating association with FFSNs, and may give better 
results compared to metrics used in our experiments. 
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Fig. 5: Comparison of standard deviation of document fetch delay (DFD) 
and processing delay (PD) 

Finally, Figure 5 shows the logarithmic scale box plot 
of standard deviation of document fetch delay (DFD) and 
processing delay (PD) distribution for benign and fast-flux 
classes. We observe that there is no significant difference 
between mean values of the classes. Since network conditions, 
limitations of slow servers, powerful bots, application process 
time, and the size of the congestion window may affect the 
features, it is observed that the C4.5 algorithm is invariant 
based on the way the timing-based features are handled. 

V. CONCLU SION 

In this paper, we developed and evaluated features for 
detection of FFSNs that are delay-free, and lightweight in 
terms of storage and computational cost. We extracted five 
different sets of features out of feature space of size 19, and 
studied by using the C4.5 algorithm to evaluate discrimination 
power of each set. A primary motivation for our study was 
that these features are often used by research community; 
however, they are not jointly investigated or compared for 
the FFSN detection. In order to address these problems, we 
demonstrated the reliability of each feature by measuring 
the information gain for each class, and evaluated in terms 
of accuracy, false and true positive rates. Finally and most 
importantly, we addressed exploiting the joint use of domain 
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name and DNS packet characteristics. It is observed that 
spatial along with network and DNS answer features lead to 
the best classification results, and the domain name features 
are the promising ones for the datasets we recorded. As a 
future work, we plan to investigate dependencies between 
the features using more sophisticated classifiers, and more 
advanced probability models for the domain name features. 
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