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ABSTRACT
For well over a quarter century, detection systems have been driven
by models learned from input features collected from real or sim-
ulated environments. An artifact (e.g., network event, potential
malware sample, suspicious email) is deemed malicious or non-
malicious based on its similarity to the learned model at runtime.
However, the training of the models has been historically limited to
only those features available at runtime. In this paper, we consider
an alternate learning approach that trains models using “privileged”
information–features available at training time but not at runtime–
to improve the accuracy and resilience of detection systems. In
particular, we adapt and extend recent advances in knowledge
transfer, model influence, and distillation to enable the use of foren-
sic or other data unavailable at runtime in a range of security
domains. An empirical evaluation shows that privileged informa-
tion increases precision and recall over a system with no privileged
information: we observe up to 7.7% relative decrease in detection
error for fast-flux bot detection, 8.6% for malware traffic detection,
7.3% for malware classification, and 16.9% for face recognition. We
explore the limitations and applications of different privileged infor-
mation techniques in detection systems. Such techniques provide
a new means for detection systems to learn from data that would
otherwise not be available at runtime.
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1 INTRODUCTION
Detection systems based on machine learning are an essential tool
for system and enterprise defense [49]. Such systems provide predic-
tions about the existence of an attack in a target domain using infor-
mation collected in real-time. The detection system uses this infor-
mation to compare the runtime environment against known normal
or anomalous states. In this way, the detection system “recognizes”
when the environmental state becomes—at least probabilistically—
dangerous. What constitutes dangerous is learned; detection al-
gorithms construct models of attacks (or non-attacks) from past
observations using a training algorithm. Thereafter, the detection
systems use that model for detection at runtime. A limitation of
this traditional approach is that it relies solely on the features (also
referred to as inputs) that are available at runtime. In practice, many

∗A short version of this paper appears in ACMAsia Conference on Computer
and Communications Security (ASIACCS) 2018.

features are too expensive to collect in real-time or only available
after the fact–and are thus ignored for the purposes of detection.

Consider a recent event that occurred in the United States. In the
Summer of 2017, the credit reporting agency Equifax fell victim to
sophisticated cyber attacks that resulted in substantial exfiltration
of personal information and intellectual property [8]. Working with
the government staff and security analysts conducted a clandestine
investigation. During that time, a vast amount of information was
collected from networks and systems across the agency, e.g., net-
work flows, system logs files and user activity. An analysis of the
collected data revealed the presence of previously undetected ad-
vanced persistent threat (APT) actors on the agency’s network. Yet,
the collected analysis is largely non-actionable by detection sys-
tems post investigation; because the vast array of derived features
would not be available at runtime, they cannot be used to train
Equifax’s detection systems.

In other contexts, features may be available at runtime but infea-
sible or undesirable to collect because of environmental or system
constraints. For example, the collection of a large numbers of fea-
tures in environments of mobile phones [6], Internet of Things
(IoT) [45], sensor networks [23], embedded control systems [46],
or ad-hoc networks [9] is often too slow or requires too many
resources to be feasible in practice.

These examples highlight a challenge for future intrusion de-
tection: how can detection systems integrate intelligence relevant to
an attack that is not available at runtime? Here, we turn to recent
advances in machine learning that support models that learn on
a superset of features used at runtime [54, 55]. The goal of the
work described in this paper is to leverage these additional features,
called privileged information (features available at training time, but
not at runtime), to improve the accuracy of detection. Using this
approach designers and operators of detection systems can leverage
additional effort during system calibration to improve detection
models without inducing additional runtime costs.

Pioneered recently by Vapnik, Izmailov, and others, learning
under privileged information eliminates the need for symmetric
features in training and runtime–thereby expanding the space of
learning models to include “ancillary" and “non-runtime" infor-
mation. However, to date, the application of these techniques in
practical domains has been limited, and within the context of se-
curity non-existent. In this work, we explore how this new mode
of learning can be leveraged in detection systems. This requires
an exploration of not only use of these new learning models but
also their applicability to security domains and the requirements of
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those domains on feature engineering. Our experience in this effort
over the last two years has demonstrated that blind application of
privileged application can lead to poor detection–yet judicious and
careful use can substantially improve detection quality.

More concretely, in this paper, we explore an alternate approach
to training intrusion detection systems that exploit privileged in-
formation. We design algorithms for three classes of privileged-
augmented detection systems that use: (1) Knowledge transfer, a
general technique of extracting knowledge from privileged informa-
tion by estimation from available information, (2)Model influence, a
model-dependent approach of influencing the model optimization
with additional knowledge obtained from privileged information;
and (3) Distillation, an approach of summarizing the additional
knowledge about privileged samples as class probability vectors.
We further explore feature engineering in a privileged setting. To
this end, we measure the potential impacts of privileged features
on runtime models. Here, we use the degree to which a feature
improves a model (accuracy gain—a feature’s additive contribution
to accuracy) as a quality metric for selecting privileged features
for a target model. We develop an algorithm and system that se-
lects features that maximize model accuracy in the presence of
privileged information. Finally, we compare the performance of
privileged-augmented systems with systems without privileged
information. We evaluate four recently proposed detection systems:
(1) face authentication, (2) fast-flux bot detection, (3) malware traffic
detection, and (4) malware classification. Our contributions are:

• We augment several diverse detection systems using three
classes of privileged information techniques and explore the
strength and weaknesses of these techniques.
• We present the first methods for feature engineering in
privileged-augmented detection for security domains and
identify inherent tensions between information utilization,
detection accuracy, and model robustness.
• We provide an evaluation of techniques on a variety of ex-
isting detection systems on real-world data. We show that
privileged information decreases the relative detection error
of traditional detection systems up to 16.9% for face authen-
tication, 7.7% for fast-flux bot detection, 8.6% for malware
traffic detection, and 7.3% for malware classification.
• We analyze dataset properties and algorithm parameters
that maximize detection gain, and present guidelines and
cautions for the use of privileged information in realistic
deployment environments.

After introducing the technical approach for detection in the next
section, we consider several key questions:

(1) How can the best features for a specific detection task be
identified? (Section 4)

(2) How does privileged-base detection perform against tradi-
tional systems? (Section 5)

(3) How can we select the best privileged algorithm for a given
domain and detection task? (Section 6)

(4) What are the practical concerns in using privileged informa-
tion for detection? (Section 7)
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Figure 1: Overview of a typical detection system (left) and proposed
solution (right): Given training data including both malicious (+)
and benign samples (–), modern detection systems use training data
to construct amodel. To predict the class of an unknown sample, the
system examines its features using the model to predict the sample
as benign ormalicious. In contrast, we construct amodel both using
training and privileged data, yet the model only requires the train-
ing data features to detect unknown sample as benign or malicious.

2 PROBLEM STATEMENT
Detection systems use traditional learning algorithms such as sup-
port vector machines or multilayer perceptrons (neural networks)
to construct detection models. These models aim at learning patterns
from historical data (also referred to as training data) to estimate an
underlying dependency, structure or behavior of a system, process
or environment. This training data is a collection of samples that
includes a vector of features (e.g., packets per second, port number)
and class labels (e.g., anomalous or normal). Once trained, runtime
events (e.g., network event) are compared to the learned model.
Without loss of generality, the model outputs a label (or label confi-
dence) that most closely fits with those of the training data. The
percentage of output labels that are correctly predicted for a sample
set is known as its accuracy.

The quality of the detection system largely depends on features
used to train models. In turn, the success of detection depends on
explanatory variation behind the features that are used to separate
an attack and benign sample. However, modern detection systems
by construction assume that the features used to make predictions
at runtimewould be identical to those used for training (See Figure 1
(left)). This assumption restricts the model training to the features
that are available at runtime to make predictions. As highlighted
above, intelligence obtained from forensic investigations [56], data
obtained through a human expert analysis [10], or features unable to
be feasibly collected at runtime is simply not actionable. Juxtapose
this with our goal of leveraging features in model training that
are not available at runtime to improve detection accuracy (See
Figure 1 (right)). Note that we do not focus on a specific detection
task or domain. We begin in the following section by introducing
the three approaches we use to integrate privileged information
into detection models.
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Figure 2: Schematic overview of approaches. Instead of making a detection model solely rely on standard features of a detection system, we
also integrate privileged features into detection algorithms.

3 PRIVILEGED INFORMATION DETECTION
This section introduces three approaches to integrate privileged
features into detection algorithms: knowledge transfer, model influ-
ence, and distillation. Figure 2 presents the schematic overview of
approaches. Stated formally, we consider a conventional detection
algorithm as a function f : X → Y that aims at predicting targets
y ∈ Y given some explanatory features x ∈ X. The models are
built using a dataset containing pairs of features and targets, de-
noted by D = {(xi ,yi )}ni=1. Following the definition of privileged
information, we consider a detection setting where the features
X used for detection are split into two sets to characterize their
availability for detection at training time. The standard features
Xs = {xi , i = 1, . . . ,n,xi ∈ Rd } includes the features that are
reliably available both at training and runtime (as in conventional
systems), while privileged featuresX∗ = {x∗i , i = 1, . . . ,n,x∗i ∈ R

m }
have constraints that prevent using them for detection at runtime.
More formally, we assume that detection models will be trained
on some data {(xi ,x∗i ,yi )}

n
i=1, and they will make detection on

some data {x j }n+mj=n+1. Therefore, our goal is creation of algorithms
that efficiently integrate privileged features {x∗i }

n
i=1 into detection

models, without requiring them at runtime.

3.1 Knowledge Transfer
We consider a general algorithm to transfer knowledge from the
space of privileged information to the space where the detection
model is constructed [54]. The algorithm works by deriving a map-
ping function to estimate each privileged feature from a subset
of standard features. The algorithm used to identify a mapping
function fi is described in Algorithm 1. The estimation is straight-
forward: the relationship between standard and privileged features
is learned by defining each privileged feature x∗i as a target and stan-
dard set as an input to a mapping function fi ∈ F (lines 1-3). The
mapping functions can be defined in the form of any function such
as regression or similarity-based (we give examples in Section 5.1).
The use of the mapping function allows a system to apply the same
model learned from the complete set at training time with the union
of standard and estimated privileged features on unknown samples
(See Figure 2a). By using fi , detection systems are able to construct
the complete features with the correct values of privileged features

Algorithm 1: Knowledge Transfer Algorithm

Input :Standard training set Xs = ®x1, . . . , ®xL , ®xi ∈ Rd
Privileged training set X∗ = ®x∗1 , . . . , ®x

∗
L ,
®x∗i ∈ R

m

fi ∈ F ← mapping function
θ ← mapping function parameters

1 Find an optimal standard set X̂ ⊆ Xs , for all x∗i ∈ X
∗

2 Select set X̂i for x∗i
3 Mapping function f evaluates (X̂i ,x∗i ) as given

x∗i = fi (X̂i , β |θ ), fi ∈ Fm
4 Output β for x∗i that minimizes fi
5 At runtime use fi to estimate x∗i

at runtime–intuitively, each fi is used to generate a synthetic fea-
ture that represents an estimate of a privileged feature (line 4). As
a result, the accurate estimation of privileged features contributes
to using complete and relevant features in a model training and,
therefore, enhances the generalization of models compared to those
trained solely on standard features. Note that the estimating power
of fi is bounded by the size and completeness of the training data
(with respect to the privileged features), and thus the use of fi in the
model should be calibrated based on measurements of estimation
quality (See Section 5.4 for details).

3.2 Model Influence
Model influence incorporates the useful information obtained from
privileged features to the correction space of the detection model
by defining additional constraints on the training errors (See Fig-
ure 2b) [54, 55]. Intuitively, the algorithm learns how privileged
information influences outputs on training input feature vectors
towards building a set of corrections for the space of inputs–in
essence creating a correction function that takes as input runtime
features and adjusts model outputs. Note that while we adapt model
influence to support vector machines (SVM) herein, it is applica-
ble to other ML techniques. More formally, consider a training
datum that is generated from an unknown probability distribution
p(Xs ,X∗,y). Our goal is to find a model f : Xs → Y such that the

3
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Figure 3: Model influence: The SVM+ uses privileged information
to correct the decision boundary of the model.

expected loss is defined as:

R(θ ) =
∫
Xs

∫
Y
L((xs ,θ ),y)p(xs ,x∗,y)dxs dy (1)

Here the system is trained on standard and privileged features but
only uses standard features at runtime. We consider the optimiza-
tion problem of SVM in its dual form as shown in Equation 2 (labeled
as primary detection objective) where α is Lagrange multiplier.

L(w,w∗,b,b∗,α ,δ ) =

main detection objective︷                                ︸︸                                ︷
1
2
| |w | |2 +

m∑
i=1

αi −
m∑
i=1

αiyi fi

+
γ

2
| |w∗ | |2 +

m∑
i=1
(αi + δi −C)f ∗i︸                                  ︷︷                                  ︸

influence from privileged features

(2)

We influence the detection boundary of a model trained on stan-
dard features fi = w⊺xsi + b at xsi with the correction function
defined by the privileged features f ∗i = w∗⊺x∗i + b

∗ at the same
location (labeled as influence from privileged features). In this man-
ner, we use privileged features as a correction function of the slack
variables ξi defined in the objective of SVM. In turn, the useful
information obtained from privileged features is incorporated as a
measure of confidence for each labeled standard sample. The formu-
lation is named as SVM+ and requires O(

√
n) samples to converge

compared toO(n) samples for SVMwhich is useful for systems with
a sparse data collection [12, 54]. We refer readers to Appendix A
for a complete formulation and implementation.

To illustrate, consider the 2-dimensional synthetic dataset pre-
sented in Figure 3, as well as the decision boundaries of two de-
tection algorithms SVM (an unmodified Support Vector Machines)
and SVM+ (the same SVM augmented with model influence correc-
tion). The use of privileged information in model training separates
the classes more accurately because privileged features accurately
transfer information to standard space, and the resulting model
becomes more robust to the outliers. This approach may provide
even better class separation in datasets with higher dimensionality.

To summarize, as opposed to knowledge transfer, we eliminate
the task of finding the mapping functions between standard and

Algorithm 2: Distillation Algorithm

Input :Standard training set Xs = ®x1, . . . , ®xL , ®xi ∈ Rd
Privileged training set X∗ = ®x∗1 , . . . , ®x

∗
L ,
®x∗i ∈ R

m

Training labels Y
T ← Temperature parameter, T > 0
λ← Imitation parameter, λ ∈ [0,1]

1 Learn a model fs using (X∗,y)
2 Compute soft labels as si = σ (fs (x∗i )/T ) for all 1 ≤ i ≤ L
3 Learn detection model using Equation 3 with the given data as
{(Xs ,Y), (Xs ,S)}

4 Make detection using θ minimizing ft for standard features xs

privileged features. Thus, we reduce the problem of model training
to a single unified task.

3.3 Distillation
Model compression or distillation are techniques to transfer knowl-
edge from a complex Deep Neural Network (DNN) to a smaller
one without loss of accuracy [24]. The motivation behind the idea
suggested in [3] is closely related to knowledge transfer. The goal
of the distillation is to use the class knowledge from both class
labels (i.e., hard labels) and probability vectors of each (i.e., soft
labels). The benefit of using class probabilities in addition to the
hard labels is intuitive because probabilities of each class define
a similarity metric over the classes apart from the samples’ cor-
rect classes. Lopez-Paz et al. recently introduced an extension of
model distillation used to compress models built on a set of features
into models built on a different set of features [33]. We adapt this
technique to detection algorithms.

We address the problem of privileged information using distilla-
tion as follows. First, we train a “privileged” model on the privileged
set and labels whose output of the model is the vector of soft labels
S . Second, we train a distilled model (used at runtime) by minimiz-
ing Equation 3, which learns a detection model by simultaneously
imitating the privileged predictions of the privileged model and
learning the targets of the standard set. The algorithm for learning
such a model is presented in Algorithm 2 and outlined as follows:

ft (θ ) = argmin
f ∈Ft

1
n

n∑
i=1

( detection︷                        ︸︸                        ︷
(1 − λ)L(yi , σ (f (x si ))+

imitate privileged set︷                ︸︸                ︷
λL(si , σ (f (x si ))

)
(3)

We learn a privileged model fs ∈ Fs by using the privileged
samples available at training time (line 1). We then compute the
soft labels by applying the softmax function (i.e., normalized ex-
ponential) si = σ (fs (x∗i )/T ) (line 2). The output is a vector which
assigns a probability to each class of the privileged samples. We
note that class probabilities obtained from privileged model provide
additional information for each class. Here, temperature parameter
T controls the degree of class prediction smoothness. Higher T
enables softer probabilities over classes and vice versa. As a final
step, Equation 3 is sequentially minimized to distill the knowledge
transferred from privileged features as a form of probability vectors
(soft labels) into the standard sample classes (hard labels) (line 3).
In Equation 3, the λ parameter controls the trade-off between priv-
ileged and standard features. For λ ≈ 0, the objective approaches

4
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Figure 4: Visualizing hard and easy benign (-) and malicious (+) ex-
amples. We select privileged features that aims at increasing the de-
tection of hard examples.

the standard set objective, which amounts to detection solely on
standard features. However, as λ → 1, the objective transfers the
knowledge acquired by the privileged model into the resulting
detection model. Therefore, learning from the privileged model
does, in many cases, significantly improve the learning process of
a detection model.

Distillation differs from model influence and knowledge transfer
in at least two ways. First, while knowledge transfer attempts to
estimate the privileged features with a representation of a mapping
function, distillation is a trade-off between the privileged sample
probabilities and standard sample class labels. Second, in contrast to
model influence, distillation is independent of the machine learning
algorithm (model-free), and its objective function can be minimized
using a model of choice.

4 PRIVILEGED INFORMATION SYSTEMS
In this section, we explore algorithms for feature engineering (se-
lecting privileged features for a detection task) and demonstrate
their use in diverse experimental systems.

4.1 Selecting Privileged and Standard Features
The first challenge facing our model of detection is deciding which
features should be used as privileged information. Asked another
way, given some potentially large universe of offline features, which
are the most likely to improve detection? To address this, we develop
an iterative algorithm that selects features that maximize model
accuracy. Selection is made on the calculated accuracy gain of each
feature–a measure of the additive value of the features concerning
an existing feature set for detection accuracy.

Our feature selection algorithm measures the potential impacts
of privileged features that help detect the hard-to-classify examples.
Generally speaking, easy examples fall in a distribution that can be
explained by some set of model parameters, and hard examples do
not precisely fit the model–and are either misclassified or near a
decision boundary (See Figure 4) [50]. As a consequence, accurate
classification of hard examples is one of the main challenges of
practical systems, as they are the main source of detection errors
due to the incorrect or insufficient information about normal or
anomalous states of a system.

Algorithm 3: Selecting privileged features
Input :Standard feature set xs

Related privileged feature set x∗
SVM Detection model J evaluating accuracy of
hard-to-classify examples

1 Start with the standard set Y0 = xs

2 Select the next privileged feature
x+ = argmaxx ∗<Yk [J(Yk + x

∗)]
3 Update Yk+1 = Yk + x+; k = k + 1
4 Go to 2
5 Output Y including standard and selected privileged features

The first step of feature engineering–as is true of any detection
task–is identifying all of the available features that potentially may
be used for detection. Specifically, we collect the set of domain-
specific features based on using domain knowledge and surveying
the recent efforts in that domain. It is from that set that we will
identify the privileged features to be used for training. Note that
defining privileged features sometimes requires a level of domain ex-
pertise. However, trained security experts will find most privileged
features straightforward after defining the runtime constraints on
features. Additionally, the initial privileged set may include irrele-
vant features that carry little or no useful information for the target
detection task; thus we identify the privileged set using Algorithm 3.
The algorithm starts with standard features of a detection system
and sequentially adds one privileged feature from the set which
maximizes correct classification of hard examples, i.e., the feature
whose addition to the existing set has the greatest positive impact
on accuracy (measured accuracy gain). The accuracy gain of hard
examples is found using SVM classifier (model J in algorithm 3).
This process is repeated until the potential feature set is empty, a
maximum number of features is reached, or the accuracy gain is
below a threshold for usefulness.

Note that the quality of the selection process is a consequence of
the training data used to calculate accuracy gain. If the training data
is not representative of the runtime input distribution, the algorithm
could inadvertently over or under-estimate the accuracy gain of a
feature and thereby weaken the detection system [15]. Additionally,
the accuracy gain can be computed via different feature selection
algorithms. For instance, a more brute force approach that evaluates
the impact of all standard and privileged feature combination can
be used. This drastically increases computation overhead with the
high dimensional datasets used in our evaluation. Note that this
limitation is not unique to feature selection in this context, but
applies to all feature engineering in extant detection systems.

4.2 Experimental Systems
In this section, we introduce four security-relevant systems for face
authentication, fast-flux bot detection, malware traffic detection,
and malware classification. We selected these experimental systems
based on their appropriateness and diversity of their detection task.
This diverse set of detection systems serves as a representative
benchmark suite for our approaches. The following are the steps
involved in constructing each system (discussed below):

(1) Extract standard features of existing detection systems

5



System Datasets and Standard features Incorporated privileged features Detection time constraints on privileged features
1 [27, 30, 58] -Raw face images -Bounding boxes and cropped versions of facial images -Need of additional software for processing

-Infeasible in energy and processing constrained sensors

2 [16, 25, 29, 42, 59]

-Number of unique A and NS records in DNS packets -Edit distance, KL divergence and Jaccard index (domain names) -Processing overhead of whitelist domains
-Network, processing and document fetch delay -Time zone entropy of A and NS records in DNS packets -IP coordinate database processing overhead

-Euclidean distance between server IP and NS address
-Number of distinct Autonomous systems and networks -Time consuming WHOIS processing

. . . . . . . . .

3 [17, 18, 36, 60]

-Data bytes divided by the total number of packets -Source and destination port numbers -Adversary easily change them in subsequent malware versions
-Total number of RTT samples found -Byte frequency distribution in packet payload
-The count of all packets with at least a byte payload -Total connection time -Payload encryption in subsequent malware versions
-The median of total IP packets -Total number of packets with URG and PUSH flag set

. . . . . . . . .

4 [2, 19] -Frequency count of hexadecimal duos in binary files -Frequency count of distinct tokens in metadata log -Software-dependency of obtaining assembly source code
-Computational overhead and error-prone feature acquisition

Table 1: Description of detection systems: 1 Face Authentication, 2 Fast-flux Bot Detection, 3 Malware Traffic Detection, and 4 Malware
Classification. Appendix B provides details on the standard and privileged features used throughout.

Figure 5: Example of face authentication features. Original image
for standard features (Left), cropped (Middle), and funneled (Right)
images used for privileged features.

(2) Add new privileged features by identifying detection-time
constraints on the features

(3) Use the algorithm in preceding section to calibrate the de-
tection system with standard and privileged features

Through this process, we construct their privileged-augmented
systems with application of approaches that is used for the valida-
tion in the following section. Table 1 summarizes the experimental
systems and the standard and privileged features selected. Addi-
tional details about these systems and their features are presented
in Appendix B.
Experimental System: Face Authentication - To explore the
efficiency of approaches in image domains, we modeled a user
authentication system based on recognition of facial images. Our
goal is to recognize an image containing a face with an identifier
corresponding to the individual depicted in the image. We use
images from a public dataset that includes face images labeled with
each person’s name [27]. We build the features from 1348 facial
images with at least 50 images per user.
Privileged information. It is recently found that face recognition
systems used for access control in particular energy and compu-
tation constrained camera sensors can be easily bypassed by an
attacker [20]. In this, the lack of useful features or number of im-
ages used to train the systems is the main reason of duping the
systems into falsely authenticate/recognize users. We use two types
of privileged features for each image in addition to the original
images in model training: cropped and funneled versions of the
images (See Figure 5) [30, 58]. These images provide additional
information for a users’ face by image aligning and localizing [26].
While it is technically possible these features can be obtained by an
aid of software or human expert at runtime, they are much more

00401000	56	8D	44	24	08	50	8B	F1	E8	1C	1B	00	00	C7	06	08	
00401010	BB	42	00	8B	C6	5E	C2	04	00	CC	CC	CC	CC	CC	CC	CC	
00401020	C7	01	08	BB	42	00	E9	26	1C	00	00	CC	CC	CC	CC	CC	
00401030	56	8B	F1	C7	06	08	BB	42	00	E8	13	1C	00	00	F6	44	
00401040	24	08	01	74	09	56	E8	6C	1E	00	00	83	C4	04	8B	C6	

...	

mov					edi,	[esp+0Ch]	
jz						short	loc_401506	
mov					esi,	[ecx+18h]	
lea					eax,	[ecx+4]	
cmp					esi,	10h	
mov					edx,	[eax]	

...	

Figure 6: Excerpt from hexadecimal representations (right), and as-
sembly view (left) of an example malware. Selected byte bigrams
and tokens for this malware is shown in boxes.

likely to not be available in low energy and slow processing sensors
(and thus we define them as privileged).1

Experimental System: Fast-flux Bot Detection - The Fast-flux
bot detector is used to identify hosts that use fast-changing DNS
entries to hide the existence of server hosts used for malicious
activities. The raw data consists of 4GB DNS requests of benign
and active fast-flux servers collected in early 2013 [16]. We build a
detection system by using the 19 features used in recently proposed
botnet detectors [29, 42, 59]. This system relies on features obtained
from domain names, DNS packets, packet timing intervals, WHOIS
domain lookup and IP coordinate database. The resulting dataset
includes many features to increase separation of Content Delivery
Networks (CDNs) from fast-flux servers, as similarities between
them are the main source of detection errors.
Privileged information. In this system, even though the complete
features are relevant for fast-flux detection, obtaining some features
at runtime entails computational delays. For example, processing
of WHOIS records, maintaining up-to-date IP coordinate database
and whitelist of domain names takes several minutes/hours. Thus,
we define eleven features obtained from these sources as privileged
to assure real-time detection.
Experimental System: Malware Traffic Detection - Next, we
modeled a malware traffic anomaly detection system based on net-
work flow statistics used in recent detection systems [17, 22, 36].
The system aggregates 20 flow features for detecting botnet com-
mand and control (C&C) activity among benign applications. For
instance, the ratio between maximum and minimum packet size
from server to client and client to server find out to be a distinctive
observation between benign andmalicious samples. We add 173 bot-
net traffic of Zeus variants that is used for spam distribution, DDoS
1We interpret the accuracy gain as a defense for hardening misclassification of users.
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System Approach
Relative Gain over Traditional Detection Parameter

Optimization?
Detection time
Overhead?Accuracy Precision Recall

Fast-flux Bot Detection Knowledge Transfer 7.7% 5.3% 3.4% ✓ ✓

Malware Classification Model Influence 7.3% 2.2% 3.7% ✓ ✗

Malware Traffic Analysis Distillation 8.6% 2.2% 5% ✓ ✗

Face Authentication Distillation 16.9% 9.3% 9.2% ✓ ✗

Table 2: Summary of accuracy, precision and recall gain via privileged information-augmented systems. The best resulting approach for each
detection system is illustrated. (See the next two sections for more details on approach comparison and runtime overhead of approaches.)

attacks, and click fraud [21, 48] to the 1553 benign applications
(web browsing, chat, email, etc..) of Lawrence Berkeley National
Laboratory (LBNL) [39] and University of Twente [5].
Privileged information. In this system, the authors eliminate the
features that can be readily altered by an attacker, as the model
trained with tampered features allows an attacker to manipulate the
detection results easily [35, 60]. The impact of altering the features
at run time on detection accuracy is recently studied [17]. For
instance, consider that destination port numbers or packet interval
time are used as a feature. An adversarymay “easily" change them in
subsequent malware versions to evade detection systems. Also, the
authors do not use payload content to obtain features because the
attacker can use encrypted traffic to prevent deep packet inspection.
Thus, we deem such eight features as a privileged, as inference does
not consider their tampered values at runtime.
Experimental System: Malware Classification - The Microsoft
malware dataset [19] is an up-to-date publicly available corpus. The
dataset includes nine malware classes including hexadecimal repre-
sentation of the malware’s binary content, and a class representing
one of nine family names. The dataset used in our experiments
includes 1746 malware samples extracted from 200GB malware
files. We build a real-time malware classification system by using
the binary content file. Following a recent malware classification
system [2], we construct features by counting frequencies of each
hexadecimal duos (i.e., byte bigrams). These features found out to
provide distinctive between different families because of exploiting
the code dissimilarities among families.
Privileged information. This dataset also includes a metadata man-
ifest log file. The log file contains information such as memory
allocation, function calls, strings, etc.. The logs along with the mal-
ware files can be used for classifying malware into their respective
families. Thus, similar to the byte files, we obtain the frequency
count of distinct tokens from asm files such as mov(), cmp() in the
text section (See Figure 6). These tokens allow us to capture execu-
tion differences between different families [2]. However, in practice,
obtaining features from log files introduces significant overheads
in the disassembly process. Further, various types or versions of
a disassembler may output byte sequences differently. Thus, this
process may result in inaccurate and slow feature processing in
real-time automated systems [37]. To address these limitations, we
include features from disassembler output as privileged for accurate
and fast classification.

5 EVALUATION
In this section, we explore the following questions:

Knowledge Transfer Model Influence Distillation

Fast-flux Bot Detection Section 5.1 Section 5.4 Section 5.4
Malware Traffic Detection Section 5.4 Section 5.2 Section 5.4
Face Authentication — — Section 5.3
Malware Classification Section 5.4 Section 5.4 Section 5.4

Table 3: Summary of validation experiments.

(1) How much does privileged-augmented detection improve perfor-
mance over systems with no privileged information? We evaluate
the accuracy, precision, and recall of approaches, and demon-
strate the detection gain of including privileged features.

(2) How well do the approaches perform for a given domain and detec-
tion task? We answer this question by comparing the results of
approaches and present guidelines and cautions for appropriate
approach calibration to maximize the detection gain.

(3) Do approaches introduce training and detection overhead? We
report model learning and runtime overhead of approaches for
realistic environments.

Table 2 shows the summary of the privileged information aug-
mented systems, and Table 3 identifies the validation experiments
described throughout. As detailed throughout, we find that the
use of privileged information can improve–often substantially–
detection performance in the experimental systems.
Overview of Experimental Setup. We compare performance of
privileged-augmented systems against two baseline (non-privileged)
models: the standard set model and the complete set model. The
standard set model is a conventional detection system that does not
include the privileged features for training or runtime, but uses
all of the standard features. The complete set model is a conven-
tional system that includes all the privileged and standards features
for training or runtime. Note that the ideal privileged information
approach would have similar performance as the complete set.

To learn standard and complete set models, we use classifiers of
Random Forest (RF) and Support Vector Machines (SVM) with a ra-
dial basis function kernel. These classifiers give better performance
in the previously introduced systems and are also preferred by the
system authors. The parameters of the models are optimized with
exhaustive or randomized parameter search based on the dataset
size. All of our experiments are implemented in Python with the
scikit-learn machine learning library or MATLAB with the opti-
mization toolbox and run on Intel i5 computer with 8 GB RAM.
We give the details of the implementation of privileged-augmented
systems while presenting the calibration of approaches in Section 6.
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Fast-flux Bot Detection (FF)
Model Accuracy Precision Recall

Complete Set RF 99±0.9 99.4 99.4
SVM 99.4±0.3 99.3 100

Standard Set RF 96.5±2.6 98.7 96.8
SVM 95±2.3 94.4 95.5

Similarity (KT) RF 98.6±1.3 99.3 98.7
SVM 96.7±1.2 98.7 97.1

Regression (KT) RF 98.3±1.4 99 98.7
SVM 96±1.1 98.7 96.1

Table 4: Fast-flux Bot Detection knowledge transfer (KT) results. All
numbers shown are percentages. The best result of the knowledge
transfer options is highlighted in boldface.

We show detection performance of complete and standard set
models and compare their results with our approaches based on
three metrics: accuracy, recall, and precision. We also present the
false positives and negatives when relevant. Accuracy is the sum of
the true positive and true negatives over a total number of samples.
Recall is the number of true positives over the sum of false negatives
and true positives, and precision is the number of true positives
over the sum of false positives and true positives. Higher values
of accuracy, precision, and recall indicates a higher quality of the
detection output.

5.1 Knowledge Transfer
Our first set of experiments compares the performance of privileged-
augmented detection system using knowledge transfer (KT) over
standard and complete set models. In this experiment, we classify
domain names into benign or malicious in fast-flux bot detection
system (FF).

To realize KT, we implement two mapping functions to esti-
mate the privileged features from a subset of standard features:
regression-based and similarity-based. We find that both mapping
functions learn the patterns of a training data and mostly suffice for
the derivation of the nearly precise estimated privileged features.
First, a polynomial regression function is built to find a coefficient
vector β ∈ Rd such that there exists a x∗i = fi (xs , β) + b + ϵ for
some bias term b and random residual error ϵ . The resulting func-
tion is then used to estimate each privileged feature at detection
time given the standard features as an input. We use polynomial
regression that fits a nonlinear relationship to each privileged fea-
ture and picks the one that minimizes the sum of squares error. To
evaluate the effectiveness of the regression, we implement a second
mapping function named weighted-similarity. This function is used
to estimate the privileged features from the most similar samples in
the training set. We first find the k most similar subset of standard
samples that are selected by using the Euclidean distance between
an unknown sample and training instances. Then, the privileged
features are replaced by assigning weights that are inversely pro-
portional to the similarities of their neighbors. We note that other
distance metrics gives worse accuracy than Euclidean distance for
the studied datasets.

Table 4 shows the accuracy of Random Forest Classifier (RF)
and Support Vector Machines (SVM) on standard, complete models,
and KT in the form of multiple regression and weighted-similarity.

Malware Traffic Detection
Model Accuracy Precision Recall

Complete Set RF 98.7±0.3 99.7 98.9
SVM 95.6±1.2 98.8 94.6

Standard Set RF 92±3 97.4 95.3
SVM 89.2±0.6 94 94.6

Model Influence SVM+ 94±1.4 94.8 98.8
Table 5:Malware TrafficDetectionmodel influence results. All num-
bers shown are percentages.

The average accuracy of ten independent runs of stratified cross-
validation is given by measuring the difference between training
and validation performance with parameter optimization (e.g., k
parameter in similarity). The complete model accuracy of both
classifiers is close to 99%. Note that baseline performance is obtained
by always guessing the most probable class yields 68% accuracy.

We found that mapping functions are effective in finding a nearly
precise relation between standard and privileged features. This
decreases the expected misclassification rate on average both in
false positives and negatives over benchmark detection with no
privileged features. Both KT mapping options come close to the
complete model accuracy on FF dataset (1% less accurate), and
significantly exceeds the standard set accuracy (2% more accurate).
The results confirm that regression and similarity are more effective
at estimating privileged features than solely using the standard
features available at runtime.

5.2 Model Influence
Next, we evaluate the performance of model influence-based priv-
ileged information in detecting Zeus botnet in real-world web
(HTTP(S)) traffic. Here, the system attempts to detect the mali-
cious activity of a Zeus botnet that connects to C&C centers and
filters private data. Note that the Zeus botnet uses HTTP mimicry
to avoid detection. As a consequence, the sole use of standard fea-
tures makes detection of Zeus difficult, resulting in high detection
error (where Zeus traffic is mostly classified as legitimate web traf-
fic). To this end, we include privileged features of packet flags,
port numbers, and packet timing information from packet headers
(See Appendix B for the complete list of features). We observe that
while these features can be spoofed by adversaries under normal
conditions, using them as privileged information may counteract
spoofing (because inference does not consider their runtime value).

We evaluate accuracy gain of model influence over the standard
model. We use a polynomial kernel in the objective function to
perform a non-linear classification by implicitly mapping the fea-
tures into a higher dimensional feature space. We note that we
avoid overfitting by tuning of the regularization parameter. Ta-
ble 5 presents the impact of model influence on accuracy, precision,
and recall and compares with standard and complete models. We
found that using the privileged features inherent to malicious and
benign samples in model training systematically better separates
the classes. This positive effect substantially improves both false
negative and false positive rates. The accuracy of model influence
is close to the optimal accuracy and reduces the detection error on
average 2% over RF trained on the standard set. This positive effect
is more observable in SVM, and the accuracy gain yields 4.8%.
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5.3 Distillation
We evaluate distillation on the experimental face authentication
system. The standard features of a face authentication system con-
sist of original images of users (i.e., background included) with 3
RGB channels. We obtain the privileged features of each image
from funneled and downscaled bounding boxes of images. In this
way, we better characterize each user’s face by specifying the face
localization and eliminating the background noise. It is important
to note that background of images may unrealistically increase the
accuracy because background regions may contribute to the distinc-
tion between images. However, we verify by manual checking that
the images in our training set do not suffer from this effect. In the
following experiments, we construct both standard and privileged
models using a deep neural network (DNN) with two hidden layers
of 10 rectifiers linear unit with a softmax layer for each class. This
type of architecture is commonly applied in computer vision and
provides superior results for image-specific applications. We train
the network with ten runs of 400 random training samples.

Figure 7 plots the average distillation accuracy with various
temperature and imitation parameters. We show the accuracy of
standard (dotted) and privileged set (dotted-dashed) models as a
baseline. The resulting model achieves an average of 89.2% correct
classification rate on the privileged set, which is better than the
standard set with 66.5%. We observe that distilling the privileged
set features into our detection algorithm gives better accuracy
than standard set accuracy with optimal T and λ parameters. The
accuracy is maximized when T = 1, the gain is on average 6.56%.
The best improvement is obtained when T = 1 and λ = 0.2 with
11.2% increase over the standard set model accuracy. However,
increases in T negatively affect detection accuracy. This is because
asT increases, the objective function puts more weight on learning
from the standard features which upsets the trade-off between
standard and privileged features.

5.4 Comparison of Approaches
Next, we compare the relative performance of the approaches on
three data sets.2 Distillation is implemented using Deep Neural
Networks (DNN), and regression and weighted similarity mapping
functions are used for knowledge transfer. Table 6 presents the re-
sults of knowledge transfer (We report similarity results as it yields
better results than regression), model influence and distillation and
compares against complete and standard models. The accuracy,
precision and recall gain of the best resulting approach for each
detection system is summarized in Table 2.

The accuracy of model influence, distillation and knowledge
transfer on the fast-flux detector and malware traffic detection is
stable. All approaches yield accuracy similar to the ideal accuracy
of the complete set model, and often the increased accuracy is the
result of the correct classification of true positives (intrusions). This
results in on average up to 5% relative gain in recall with the model
influence and distillation over conventional models. In contrast,
knowledge transfer often increases the number of samples detected
by systems as being actually malicious (e.g., 99.3% precision in
the fast-flux detector), meaning that the number of false alarms is

2We do not compare performance on face recognition because processing the number
of the input features (e.g., pixels) was intractable for several solutions.
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Figure 7: Distillation impact on accuracy with privileged features in
face authentication system. We plot standard and privileged set ac-
curacy as a baseline. Temperature (T ) and imitation (λ) parameters
are quantified on various values to show their impact on accuracy.

reduced over conventional detection. The results confirm that the
approaches are able to balance the conventional detection and its
accuracy by using privileged features inherent to both benign and
malicious samples: either reducing the false positives or negatives.
We note that these results are obtained after carefully tuning the
model parameters. We further discuss their parameter tuning in
the following section and impact of results on systems in section 7.

Distillation is easy to apply as its objective is independent of the
machine learning algorithm (model-free) and often yields better
results than other approaches. Its quality as a detection mechanism
becomes more apparent when its objective function is implemented
with deep neural networks (DNN) with a nonlinear objective [33].
This makes distillation give better results on average than other
approaches. On the other hand, the design and calibration of model
influence detection require additional effort and care in tuning
parameters–in the experiments, this additional effort yields strong
detection (as 94.6% in malware classification). Note that when the
dataset includes a large number of privileged features or samples,
training of model influence takes significantly more time compared
to other approaches (See next section).

Finally, it is important to note that the while knowledge transfer
accuracy gain for fast-flux detection and malware traffic analysis is
similar to other approaches, its malware classification results are
inconsistent (i.e., 83.5% average accuracy with an 11.2% standard de-
viation). Neither regression nor similarity mapping functions were
able to predict the privileged features near precisely, in turn, they
slightly degrade the accuracy (7-8%) on both RF and SVM standard
set models. This observation confirms the need to find and evalu-
ate an appropriate mapping function for the transfer of knowledge
discussed in Section 3.1. In this particular dataset, the mapping func-
tions fail to find a good relation between standard and privileged
features. Regression suffers from overfitting to uncommon data
points and similarity lacks fitting data points that distinctly lie an
abnormal distance from the range of standard features (confirmed
by an increase in the sum of square errors of estimated and true
values for the privileged features). We remark that derivation of
more advanced mapping functions may solve this problem. Further,
model influence and distillation solve this by eliminating the use of
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Fast-flux Bot Detection Malware Traffic Detection Malware Classification
Model Acc. Pre. Rec. Acc. Pre. Rec. Acc. Pre. Rec.

Complete Set RF 99±0.9 99.4 99.4 98.7±0.3 99.7 98.9 96.6±1.2 99.3 95.2
SVM 99.4±0.3 99.3 100 95.6±1.2 98.8 94.6 95.7±1 98.6 94.6

Standard Set RF 96.5±2.6 98.7 96.8 92.9±3 97.4 95.3 91.2±1 91.3 94.4
SVM 95±2.3 94.4 95.5 89.2±0.6 94 94.6 91.8±1.1 93.2 93.6

KT (Similarity) RF 98.6±1.3 99.3 98.7 93.3±2.1 94.4 98.4 90.1±2.2 97.3 88
SVM 96.7±1.2 98.7 97.1 92.6±0.9 95.1 96 83.5±11.2 88.3 85.6

Model Influence SVM+ 97.3±1.3 97 99.3 94±1.4 94.8 98.8 94.6±2.3 93.3 97.8
Distillation DNN 97.5±0.3 97.4 99.3 95.7±0.6 96.1 99.3 92.6±0.7 92.6 95.3

Table 6: Summary of results: Accuracy (Acc.), Precision (Pre.) and Recall (Rec.) The best result for each detection system is highlighted in bold.

mapping functions and including standard and privileged feature
dependency into their objectives.

Therefore, based on the above observations, the approaches are
in need for a calibration based on the domain and task-specific
properties to maximize the detection gain, as explored next.

6 LIMITATIONS
In this section, we discuss the required dataset properties, algorithm
parameters, training, and runtime overhead of using privileged in-
formation for detection. We also present guidelines and cautionary
warnings for use of privileged information in realistic deployment
environments. A summary of an approach selection criteria is pre-
sented in Table 7.
Model Dependency.Model selection is a task of picking an appro-
priate model (e.g., classifier) to construct a detection function from
a set of potential models. Knowledge transfer can be applied to a
model of choice, as privileged features are inferred with any accu-
rately selected mapping function. Distillation requires a model with
a softmax output layer for obtaining probability vectors. However,
we adapt model influence to SVM’s objective function.
Detection Overhead. The mapping functions used in knowledge
transfer may introduce detection delays while estimating the priv-
ileged features. For instance, weighted similarity introduced in
Section 3.1 defers estimation until detection without learning a
function at training time (i.e., lazy learner). This may introduce a
detection bottleneck if dataset includes a large number of samples.
To solve this problem, we apply stratified sampling to reduce the
size of the dataset. Furthermore, constructing mapping functions
at training time such as regression-based minimize the delay of
estimating privileged features. For instance, in our experiments,
weighted-similarity is used to estimate ten privileged features of
5K training samples in less than a second delay on 2.6GHz 2-core
Intel i5 processor with 8GB RAM. Regression reduces this value to
milliseconds. Therefore, if delay at runtime is the primary concern,
we suggest using model influence and distillation for learning the
detection model, as they introduce no overhead at runtime.
Model Optimization. To obtain the best performance results, the
parameters and hyperparameters of approaches need to be care-
fully tuned. For instance, fine-tuning of temperature and imitation
parameters in distillation and kernel function hyperparameters
in model influence approaches may increase the detection perfor-
mance. Similar to conventional detection, the number of parameters

Model Detection time Model Training time
Approach dependency overhead optimization overhead

Knowledge Transfer ✗ ✓

Model Influence ✓ ✗

Distillation ✗ ✗

Legend: ✓ yes ✗ no model dependent relatively higher
Table 7: Guideline for approach selection.

required to be optimized both for knowledge transfer and general-
ized distillation can be determined a priori based on the selected
model. However, model influence has twice as many parameters
as SVM—two kernel functions are used simultaneously to learn
detection boundary in standard and privileged feature spaces. We
apply grid search for small training sets and evolutionary search
for large-scale datasets for parameter optimization.
Training Overhead. Training set size affects the time required
by model learning. The amount of additional time needed to run
both knowledge transfer and generalized distillation is negligible,
as they require similar models as existing systems apply. However,
the objective function of model influence may become infeasible
or take a long time when the dimension of the feature space is
very small, or dataset size is quite large. For instance, in our experi-
ments, distillation and knowledge transfer train 1K samples with
50 standard and privileged features on the same machine used for
one minute including optimal parameter search. Model influence
takes on average 30 minutes on the same machine used for mea-
suring detection overhead. Packages that are designed specifically
for solving the quadratic programming (QP) problems (e.g., MAT-
LAB quadprog() function) can be used instead of general solvers
such as convex optimization package CVX to reduce the training
time. Further, specialized spline kernels can be used to accelerate
the computation [54]. We give a specific implementation of model
influence in such packages in Appendix A.

7 DISCUSSION
Our empirical results show that approaches reduce both false posi-
tives and negatives over the systems solely built on their standard
features. In a security setting, a false positive makes it extremely dif-
ficult for the analyst examining the reported incidents only to iden-
tify the mistakenly triggered benign events correctly. It is not sur-
prising, therefore, that recent research focuses on post-processing
of the alerts to produce a more qualitative alert set useful to the
human analyst [51]. False negatives, on the other hand, have the
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potential to cause catastrophic damage to both users and organiza-
tions: even a single compromised system can cause serious security
breaches. For instance, in malware traffic and fast-flux bot detection,
a false negative may cause a bot filter private data to a malicious
server. In the case of malware classification and face authentication,
it undermines the integrity of a system by misclassifying malware
into another family or recognizing the wrong user. Thus, in no small
way, improvement in false positives and negatives of these systems
does matter in operational settings, improving reliable detection.

7.1 Uses of Privileged Information
Privileged information is not restricted to the domains discussed
above, but are readily adaptable problems and machine learning
settings. For example, privileged information can be adapted to
settings with unsupervised, regression, and metric learning [31].
With respect to detection, we consider several illustrative uses of
privileged information below:
Mobile Device Security - The growth of mobile malware requires
robust malware detectors on mobile devices. Current systems col-
lect data for numerous type of attacks; however, exhaustive data
collection at runtime can have high energy costs and induce notice-
able interface lag. As a consequence, users may disable the detection
mechanism [6]. We note that high-cost features can be defined as
privileged information to combat this problem.
Enterprise Security - Enterprise systems use audit data gener-
ated from a diverse set of devices and information sources for
analysis [10]. For instance, SIEM products collect data from hosts,
applications, and network devices in incredible volumes (e.g., 100K
events per second yielding to 42 TB of compressed data). These
massive datasets are mined for patterns identifying sophisticated
threats and vulnerabilities. However, systems may be overwhelmed
by feature collection and processing at runtime which makes their
collection impractical for many settings. In such cases, features
involving complex and expensive data collection can be defined as
privileged to balance the real-time costs and accuracy.
Privacy Enhanced Detection - Many detection processes require
the collection of privacy-relevant features, e.g., pattern and sub-
stance of user network traffic, use of the software [11, 13]. Hence,
it is important to reduce the collection and exposure of such data–
legal and ethical issues may prevent continuously monitoring them
in their original form. In these cases, a set of features can be defined
as privileged to eliminate the requirement of obtaining and poten-
tially retaining privacy-sensitive features at runtime from users
and environments.

7.2 Privileged Information as a Defense
We also posit that privileged information can be used as a defense
mechanism in adversarial settings. More specifically, the key at-
tacks targeting machine learning are organized into two categories
based on adversarial capabilities [28]: (1) causative (poisoning) at-
tacks in which an attacker controls the training data by injecting
well-crafted attack samples to control the prediction results, and
(2) explanatory (evasion) attacks in which attacker manipulates the
malicious samples to evade detection. For the former, privileged
features adds an extra step for the attacker to pollute the training
data because the attacker needs to dupe the data collection into

including polluted privileged samples in addition to the standard
samples–which for many systems including online learning would
potentially be much more difficult. For the latter, privileged fea-
tures may make detection systems more robust to the adversarial
samples because privileged features cannot be controlled by the
adversary when producing malicious samples [32]. Moreover, be-
cause the model is hidden from the adversary they cannot know
the influence of these features on the model [7]. As a proof of con-
cept, recent works have used distillation of standard features as a
defense mechanism against adversarial perturbations in DNNs [40].
In future work, we plan to further evaluate privileged information
as a mechanism to harden machine learning systems.

8 RELATEDWORK
Domain-specific feature engineering has been a key effort within
the security communities. For example, researchers have previously
used specific patterns to group malware samples into families [2,
38, 43], have explored using DNS information to understand and
predict botnet domains [1, 4, 14, 59], and have analyzed network
and system level features to identify previously unknown malware
traffic [17, 36, 44]. Other works have focused on user authentication
from facial images [41, 52]. We view our efforts in this paper to be
complementary to these and related works. Features in these works
can be easily enhanced with privileged information in detection
algorithms to strike a balance between accuracy and the cost or
availability constraints at runtime.

The use of privileged information has recently attracted attention
in a few others areas such as computer vision, image processing, and
even finance. Wang et al. [57] and Sharmanska et al. [50] derived
privileged features from images in the form of annotator rationales,
object bounding boxes, and textual descriptions. Ribeiro et al. used
annual turnover and global balance values as privileged features
for enhancing the financial decision-making [47]. However, their
approaches are not designed to model security-relevant data and
do not consider feature engineering but rather to determine if there
is a possibility of application to a domain specific information.

9 CONCLUSIONS
We have presented a range of techniques to train detection systems
with privileged information. All approaches use features available
only at training time to enhance the accuracy of detection models.
We consider three approaches: (a) knowledge transfer to construct
mapping functions to estimate the privileged features, (b) model
influence to smooth the detection model with the useful informa-
tion obtained from the privileged features, and (c) distillation using
probability vector outputs obtained from the privileged features in
the detection objective function. Our evaluation of several detection
systems shows that we can we improve the accuracy, recall, and
precision regardless of their high detection performance using priv-
ileged features. We also presented guidelines for approach selection
in realistic deployment environments.

This work is the first effort at developing detection under privi-
leged information by exploring feature engineering, algorithms, and
environmental calibration. The capability afforded by this approach
will allow us to integrate forensic and other auxiliary information
that, to date, has not been actionable for detection. In the future, we
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will explore various environments and evaluate its ability to pro-
mote resilience to adversarial manipulation in detection systems. In
this way, we will explore new models and systems using privileged
features to promote lightweight, accurate and robust detection.
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A MODEL INFLUENCE OPTIMIZATION
In this Appendix, we present the formulation of model influence
approach introduced in Section 3.2 (Section A.1) and its implemen-
tation in MATLAB (Section A.2) in order to realize the paradigm in
detection systems.

A.1 Model Influence Formulation
We can formally divide the feature space into two spaces at training
time. Given L standard vectors ®x1, . . . , ®xL and L privileged vectors
®x∗1 , . . . , ®x

∗
L with a target class y = {+1,−1}, where ®xi ∈ RN and

®x∗i ∈ R
M for all i = 1, . . . ,L. The kernels K( ®xi , ®x j ) and K∗( ®x∗i , ®x

∗
j )

are selected along with positive parameters κ, and γ . Our goal is
finding a detection model f → xs : y. The optimization problem is
formulated as [54]:



L∑
i=1

αi −
1
2

L∑
i, j=1

yiyjαiα jK( ®xi , ®x j )

−γ
2

L∑
i, j=1

yiyj (αi − δi )(α j − δj )K∗( ®x∗i , ®x
∗
j ) → max

L∑
i=1

αiyi = 0,
L∑
i=1

δiyi = 0

0 ≤ αi ≤ κCi , 0 ≤ δi ≤ Ci , i = 1, . . . ,L

(1)

The detection rule f for vector ®z is defined as:

f (®z) = sign

( L∑
i=1

yiαiK( ®xi , ®z) + B
)

(2)

where to compute B, we first derive the Lagrangian of (1):

L(®α , ®β , ®ϕ, ®λ, ®µ, ®ν , ®ρ) =
L∑
i=1

αi −
1
2

L∑
i, j=1

yiyjαiα jK( ®xi , ®x j )

− γ

2

L∑
i, j=1

yiyj (αi − δi )(α j − δj )K∗( ®x∗i , ®x
∗
j )

+ ϕ1

L∑
i=1

αiyi + ϕ2

L∑
i=1

δiyi +
L∑
i=1

λiαi

+

L∑
i=1

µi (κCi − αi ) +
L∑
i=1

νiδi

+

L∑
i=1

ρi (Ci − δi ) (3)

with Karush-Kuhn-Tucker (KKT) conditions (for each i = 1, . . . ,L),
we rewrite
∂L
∂αi
= −K( ®xi , ®xi )αi − γK∗( ®x∗i , ®xi

∗)αi + K∗( ®x∗i , ®x
∗
i )γδi

−
∑
k,i

K( ®xi , ®xk )yiykαk − γ
∑
k,i

K∗( ®x∗i , ®x
∗
k )yiyk (αk − δk )

+ 1 + ϕ1yi + λi − µi = 0
∂L
∂δi
= −K∗( ®x∗i , ®x

∗
i )γδi + K

∗( ®x∗i , ®x
∗
i )γαi

+
∑
k,i

K( ®xi , ®xk )yiykγ (αk − δk )

+ ϕ2yi + νi − ρi = 0 (4)

where

λi ≥ 0, µi ≥ 0, νi ≥ 0, ρi ≥ 0, (5)
λiαi = 0, µi (Ci − αi ) = 0,
νiδi = 0, ρi (Ci − δi ) = 0,
L∑
i=1

αiyi = 0,
L∑
i=1

δiyi = 0

We denote for i = 1, . . . ,L

Fi =
L∑

k=1
K( ®xi , ®xk )ykαk , (6)

fi =
L∑

k=1
K∗( ®x∗i , ®x

∗
k )yk (αk − δk )

and rewrite (4) in the form

∂L
∂αi
= −yiFi − γyi fi + 1 + ϕ1yi + λi − µi = 0

∂L
∂δi
= γyi fi + ϕ2yy + νi − ρi = 0

λi ≥ 0, µi ≥ 0, νi ≥ 0, ρi ≥ 0,

λiαi = 0, µi (Ci − αi ) = 0, νiδi = 0, ρi (Ci − δi ) = 0
L∑
i=1

αiyi = 0,
L∑
i=1

δiyi = 0

(7)

The first equation in (7) implies

ϕ1 = −yj (1 − yjFj − γyj fj + λj − µ j ) (8)

for all j. If j is selected such that 0 < α j < κCj and 0 < δj < Cj ,
then (7) implies λj = µ j = νj = ρ j = 0 and (8) has the following
form

ϕ1 = −yj (1 − yjFj − γyj fj )

ϕ1 = −yj ((1 −
L∑
i=1

yiyjK( ®xi , ®x j )(αi )

− γ
L∑
i=1

yiyjK
∗( ®x∗i , ®x

∗
j )(αi − δi ))
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Therefore, B is computed as B = −ϕ1:

B = yj (1 −
L∑
i=1

yiyjK( ®xi , ®x j )(αi )

− γ
L∑
i=1

yiyjK
∗( ®x∗i , ®x

∗
j )(αi − δi )) (9)

where j is such that 0 < α j < κCj and 0 < δj < Cj .

A.2 Model Influence Implementation
We present implementation of model influence by solving its qua-
dratic programming problem using MATLAB quadprog function
provided by the optimization toolbox. Other equivalent functions
in R [53] or similar software can be easily adapted.

MATLAB function quadprog(H , ®f ,A, ®b,Aeq, ®beq, ®lb, ®ub) solves
the quadratic programming problem in the form as follows:

1
2
®zTH ®z + f T ®z → min

A · ®z ≤ ®b
Aeq · ®z = ®beq
®lb ≤ ®z ≤ ®ub

(10)

Here, H ,A,Aeq are matrices, and ®f , ®b, ®beq, ®lb, ®ub are vectors. ®z is
defined as ®z = (α1, . . . ,αL ,δ1, . . . ,δL) ∈ R2L . We now rewrite (1)
in the form of (10).

1
2
®zTH ®z + f T ®z → min

where
f = (−11,−12, . . . ,−1L , 0L+1, . . . , 02L)

and

Hi j =

(
H11 H12

H12 H22

)
where, for each pair i, j = 1, . . . ,L,

H11
i j = K( ®xi , ®x j )yiyj + γK∗( ®x∗i , ®x

∗
j )yiyj ,

H12
i j = −γK

∗( ®x∗i , ®x
∗
j )yiyj ,

H22
i j = +γK

∗( ®x∗i , ®x
∗
j )yiyj

The second line of (10) is absent. The third line of (10) corresponds
to the second line of (1) when written as

Aeq · ®z = ®beq
where

Aeq =

(
y1 y2 · · · yL 0 0 · · · 0
0 0 · · · 0 y1 y2 · · · yL

)
,

®beq =
(
0
0

)
The fourth line of (10) corresponds to the third line of (1) when
written as

®lb ≤ ®z ≤ ®ub
where

®lb = (01, 02, . . . , 0L , 0L+1, . . . , 02L),
®ub = (κC1,κC2, . . . ,κCL ,C1,C2, . . . ,CL)

After all variables (H , ®f ,A, ®b,Aeq, ®beq, ®lb, ®ub) are defined, op-
timization toolbox guide [34] can be used to select quadprog()
function options such as an optimization algorithm and maximum
number of iterations. Then, output of the function can be used in
detection function f for a new sample ®z to make predictions as
follows:

f (®z) = sign

( L∑
i=1

yiαiK( ®xi , ®z) + B
)

(11)

B DETAILS OF DETECTION SYSTEMS
In this Appendix, we detail the standard and privileged features
of fast-flux bot and malware traffic detection systems introduced
in Section 4.2. Table 1 presents feature categories and definitions
of fast-flux bot detector obtained from recent works [25, 29, 42,
59], and Table 2 presents the features of malware traffic detector
obtained from recent works [17, 18, 36, 60]. The interested reader
can refer to the references for the motivation of the feature selection.

14



Category Definition Feature dependency Feature type
DNS Answer Number of unique A records

Number of NS records
DNS packet analysis standard set

Timing

Network delay (µ and σ )
Processing delay (µ and σ )
Document fetch delay (µ and σ ) HTTP requests standard set

Domain name

Edit distance
Kullback-Leibler divergence (unigrams and bigrams)
Jaccard similarity (unigrams and bigrams) Whitelist of benign domain names privileged set

Spatial

Time zone entropy of A records
Time zone entropy of NS records
Minimal service distances (µ and σ )

IP coordinate database lookup (external source) privileged set

Network Number of distinct autonomous systems
Number of distinct networks

WHOIS processing (external source) privileged set

Table 1: Fast-flux bot detection system standard and privileged feature descriptions (µ is mean and σ is std. dev.).

Abbreviation Definition Properties Feature type
cnt-data-pkt The count of all the packets with at least a byte

of TCP data payload
-TCP length is observed
-Client to server

standard set

min-data-size The minimum payload size observed -TCP length observed
-Client to server
-0 if there are no packets

standard set

avg-data-size Data bytes divided by the total number of pack-
ets

-TCP length observed
-Packets with payload observed
-Server to client
-0 if there are no packets

standard set

init-win-bytes The total number of bytes sent in initial window -Retransmitted packets not counted
-Client to server & server to client
-0 if no ACK observed
-Frame length calculated

standard set

RTT-samples The total number of RTT samples found -Client to server standard set
IP-bytes-
median

Median of total IP packets -IP length calculated
-Client to server

standard set

frame-bytes-
var

Variance of bytes in Ethernet packets -Frame length calculated
-Client to server

standard set

IP-ratio Ratio between the maximum packet size and
minimum packet size

-IP length calculated
-Client to server & server to client
-1 If a packet observed, and if no packets are observed 0 is reported

standard set

pushed-data-
pkts

The count of all the packets seen with the PUSH
set in TCP header

-Client to server & server to client standard set

goodput Total number of frame bytes divided by the
differences between last packet time and first
packet time

-Frame length calculated
-Client to server
-Retransmitted bytes not counted

standard set

duration Total connection time Time difference between the last packet and first packet (SYN flag
is seen from destination)

privileged set

min-IAT Minimum packet inter-arrival time for all pack-
ets of the flow

-Client to server & server to client privileged set

urgent-data-
pkts

The total number of packets with the URG bit
turned on in the TCP header

-Client to server & server to client privileged set

src-port Source port number -Undecoded privileged set
dst-port Destination port number -Undecoded privileged set
payload-info Byte frequency distributions -If not HTTPS at training time

-If payloads are available
-Client to server & server to client

privileged set

Table 2: Malware traffic detection standard and privileged feature descriptions.
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