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Abstract

Controller Area Network (CAN) has established itself as the

main internal communication medium for vehicles. However,

recent works have shown that error handling makes CAN

nodes vulnerable to certain attacks. In the light of such a

threat, we systematically analyze CAN’s error handling and

fault confinement mechanism to investigate it for further vul-

nerabilities. In this paper, we develop CANOX, a testing tool

that monitors the behavior of a CAN node under different

bus and error conditions, and flags conditions that cause an

unexpected node behavior. Using CANOX, we found three

major undiscovered vulnerabilities in the CAN standard that

could be exploited to launch a variety of attacks. Combining

the three vulnerabilities, we construct the Scan-Then-Strike

Attack (STS), a multi-staged attack in which an attacker with

no previous knowledge of the vehicle’s internals maps the

vehicle’s CAN bus, identifies a safety-critical ECU, swiftly

silences it, and persistently prevents it from recovering. We

validate the practicality of STS by evaluating it on a CAN bus

testbed and a real vehicle.

1 Introduction

Since its introduction by Bosch in 1986, the Controller Area

Network (CAN) protocol has offered low cost and efficient

solutions to major challenges in vehicular communications

among electronic control units (ECUs), such as interference,

priority management, decentralization, error handling, and

fault confinement [2]. A vehicle today contains over a hundred

ECUs sensing and actuating most vehicles’ maneuvers. How-

ever, prior research has shown that an attacker can gain access

to a vehicle’s CAN by compromising an in-vehicle ECU (e.g.,

telematics control unit) through a wired/wireless medium,

including USB, cellular, Bluetooth and WiFi [3,17,19,20,26].

Since CAN was not designed with security in mind, a com-

promised ECU can be exploited to launch various attacks

on other safety-critical ECUs (e.g., brakes), which cannot be

directly compromised [15]. In this paper, we study an alarm-

ing type of attacks that directly exploits the error handling

and fault confinement mechanism of CAN, turning CAN’s

reliability function into its security weakness [4, 12, 18, 21].

On a vehicular CAN, collisions, interference, and wire

faults occur often. To operate for extended periods with no

external supervision, CAN defines a set of rules for error de-

tection, handling, and fault confinement to be enforced by a

node throughout its operation [2]. For fault confinement, a

CAN node monitors its health by counting the number of en-

countered errors. Additionally, CAN introduces the concept

of error states, which are different sets of rules governing

transmission and error signaling. CAN defines three error

states: error active, error passive, and bus off. By default,

nodes operate in the error active state. Once a node’s error

counter exceeds a certain threshold, it enters the error passive

state, where stricter rules are enforced. If errors persist, the

node moves to the bus off state, where it disconnects itself

from the network. Exploiting this specific feature, prior work

presented a denial-of-service (DoS) attack called bus off at-

tack [4] in which an attacker node deliberately collides its

packets with those of a victim node, causing bit errors. These

errors gradually increase the victim’s error counter until it

drops into the bus off state, disconnecting it from the bus.

The attacker’s ability to induce packet collisions in CAN is

extremely dangerous as it opens the doors for attackers to dic-

tate the victim’s error state. We argue that, since CAN nodes

were not expected to leave the error active state except under

certain error conditions, the security impacts of operating out-

side of the error active state are vastly understudied, and the

vulnerabilities inherent to their design remain undiscovered.

In this paper, we introduce CANOX (CAN Operation eX-

plorer), an automated testing tool that explores the impacts

of operating outside of the default error active state to iden-

tify possible vulnerabilities in the Controller Area Network

(CAN) standard. CANOX places a CAN node in a controlled

environment, sets its operation and error state, systematically

changes the operational conditions of the node and the envi-

ronment, and monitors certain behavioral metrics to identify

conditions that result in unexpected node behaviors.

Using CANOX, we have discovered three fundamental

vulnerabilities in CAN’s error handling mechanism. (1) Pas-



sive Error Regeneration: The error signaling procedure in

the error passive state could make the node’s error counter

rapidly and silently increase under normal bus conditions. An

attacker could exploit this vulnerability to launch an advanced

DoS attack that we call the Single Frame Bus Off (SFBO),

in which the attacker pushes a node to the bus off state by

attacking a single message, making it more than 36x faster

than previous attacks. (2) Deterministic Recovery: When a

node recovers from the bus off state, it exhibits a deterministic

behavior. An attacker could exploit this vulnerability to pre-

vent a node’s recovery, perpetuating the node’s stay in the bus

off state. (3) Error State Outspokenness: A node operating

in the error passive state exhibits a distinct, easily identifi-

able behavior. An attacker could exploit this vulnerability to

identify message sources or identify an ECU’s function.

Even though an attacker may exploit each of these vulnera-

bilities individually, we demonstrate the significant threat of

these vulnerabilities by combining them to construct a single,

powerful, multi-staged attack called the Scan-Then-Strike at-

tack (STS). In STS, a remote attacker, with no knowledge of

the car’s internals, exploits the discovered vulnerabilities to

gain knowledge before striking their victim. First, the attacker

starts by mapping the internal network. Next, the attacker

identifies a safety-critical ECU. The attacker then learns the

ECU’s recovery behavior. Finally, the attacker strikes the ECU

and prevents it from recovering, achieving a persistent DoS.

In contrast to the Original Bus Off Attack (OBA) [4], STS uti-

lizes SFBO to push a victim to the bus off state by attacking

a single message, enabling it to be persistent, as it can imme-

diately re-attack the victim’s recovery attempts. Moreover,

OBA assumes that the attacker already knows the network

map, ECU functions, and the IDs they transmit. In compari-

son, STS exploits the discovered vulnerabilities to gain this

knowledge, significantly reducing the attacker’s assumptions.

Prior efforts have proposed different network mapping solu-

tions [5,6,8,13,14,16]. Nevertheless, these works approached

network mapping from a defense standpoint. Thus, they either

required physical access and special equipment [6, 8, 13, 14],

or used time-consuming learning techniques that worked

only with periodic messages [5, 16], and proved to be evad-

able [1, 23]. Conversely, to the best of our knowledge, STS

employs the first network mapping solution that identifies

sources of periodic and aperiodic messages with 100% accu-

racy without using special equipment but using the existing

ECU capabilities. We summarize our contributions as follows:

• Developing CANOX, an automated testing tool to examine

CAN’s error handling and fault confinement mechanism to

find vulnerabilities in the CAN standard.

• Discovering three major vulnerabilities in CAN’s error han-

dling and fault confinement mechanism that could be ex-

ploited separately or in combination. We combine them to

construct a powerful and persistent attack, STS.

• Demonstrating the practical impact of the vulnerabilities by

evaluating STS on a testbed as well as a real vehicle.

2 Background and Motivation

2.1 Normal CAN Operation

Architecture of a CAN Node. A CAN node consists of three

major components: an application program, a CAN controller,

and a CAN transceiver. The application program writes/reads

message data and its identifier (ID) to (from) the controller.

The controller is responsible for framing, bus arbitration, send-

ing/receiving acknowledgments, and error handling. Lastly,

the transceiver translates the bitstream coming out of the CAN

controller into a voltage signal that is transmitted on the bus.

We note that the application code cannot directly control the

CAN controller for transmitting single bits on the bus, nor

can it precisely control the transmission time of a message.

Bit Communication. The transceiver communicates a

bit (0/1) on the bus using a two-level (high/low) voltage value.

As such, the bits 0 and 1 are called dominant and recessive

bits, respectively. During concurrent transmission of different

bits by two or more nodes, the bus acts as a wired-AND gate,

e.g., when a dominant bit and a recessive bit are concurrently

transmitted, the resulting bit on the bus is dominant.

Framing. Two data frame formats could be used, the standard

and the extended formats. As shown in Fig. 1, in the standard

format, the ID is 11 bits long. The ID does not indicate the

source/destination of the message, but it describes the mean-

ing of the data contained in the message. Hence, a receiver

ECU cannot determine the source. Although not intended to

have any security impacts, this fact works as a double-edged

sword, it facilitates impersonation attacks, but at the same

time provides anonymity to the transmitter.

Arbitration. CAN uses lossless bitwise arbitration to detect

collisions and provide transmission priorities. If two nodes

start transmitting at the same time, they first go through an

arbitration phase, starting at the ID field and ending at the RTR

bit, as shown in Fig. 1. CAN controllers sense the bus as they

transmit every bit. During arbitration, if a controller sending

a recessive bit senses that the bus is dominant, it stops the

transmission. Consequently, this mechanism gives messages

with a smaller ID value a higher priority. After arbitration,

if a controller sending a recessive bit senses that the bus is

dominant, it stops the transmission and raises an error.

2.2 Error Handling and Fault Confinement

CAN Errors. CAN defines five error types: Bit Errors, Stuff

Errors, Form Errors, Acknowledgement Errors, and CRC Er-

rors. These errors may happen either during transmission or

reception. Each node maintains two counters: Transmit Error

Counter (TEC) and Receive Error Counter (REC). When a

transmitter encounters an error, it sends an error frame and

increases TEC by 8. Similarly, when a receiver encounters

an error, it sends an error frame and increases REC by 1. A

successful transmission decreases TEC by 1, and a successful

reception decreases REC by 1. The format of error frames
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differ based on the error state of the node.

Error States. To provide fault confinement, CAN defines

three error states as illustrated in Fig. 2.

(1) Error Active: A node by default is in this state. Here, a

node’s minimum idle time between two consecutive frames

is 3 bit-periods. Additionally, in this state, when the node wit-

nesses an error, it sends an active error frame, consisting of 6

dominant bits, followed by 8 recessive bits (Fig. 1). Active er-

ror frames override and terminate any ongoing transmission.

(2) Error Passive: A node enters this state when its REC or

TEC exceeds 127. Here, an additional 8-bit suspend trans-

mission period is added between successive transmissions.

Further, on witnessing an error, the node transmits a passive

error frame, consisting of 14 recessive bits (Fig. 1). Unlike

the active error frame, a passive error frame is not observable

on the bus and does not interrupt any ongoing transmission.

(3) Bus Off: A node enters this state when its TEC exceeds

255. In this state, the node disconnects itself from the net-

work. It stops transmitting or receiving messages. The node is

permitted to go back to the active error state after observing

at least 128 instances of 11 recessive bits on the bus.

Deliberate Packet Collisions. In [4], the authors propose

a method to deliberately cause collisions on the bus using

bit errors. The method includes two nodes simultaneously

transmitting messages with the same ID, but with different

contents, as shown in Fig. 3. To achieve simultaneous trans-

mission with a specific message ID, the message arrival time

for that ID should be known. Appendix A further explains

how to synchronize two messages to cause a collision.

2.3 Threat Model

We assume that the attacker is an ECU node compromised

by a remote attacker, capable of executing arbitrary software

code on the node. Such abilities have been demonstrated in

prior art [3, 9, 15, 17, 19, 20, 27]. The attacker does not have

any prior knowledge of the in-vehicle network except for the

vehicle’s make and model. The attacker also needs to follow

the specifications of the CAN controller hardware.

3 CANOX

CAN Operation eXplorer (CANOX) is an automated testing

tool, which explores the impacts of operating outside of the

default error active state to detect possible vulnerabilities in
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the CAN standard. The purpose of building CANOX is to

assess what an attacker can achieve by pushing a node outside

of the default error active state. Therefore, CANOX’s main

goal is to detect unexpected behavioral deviations from the er-

ror active state. To do so, CANOX places a fully controllable

and programmable CAN node, called the Node Under Test

(NUT), in different error states, sets up specific test scenarios,

and defines its expected behavior in each scenario. It then

monitors the node’s behavior and flags any deviations from

its expected behavior.

While changing the error state of a node affects certain

behavioral aspects specified in the CAN standard [2], the im-

plications of such changes and the enforcement level of error

state-specific rules have not been thoroughly analyzed. There-

fore, we use CANOX to investigate unexpected behaviors

that result from conflicting and unenforced rules, or hidden

implications of poorly studied rules, as these may pose signifi-

cant threats to the security and performance of a CAN system.

Here we define “unexpected” as a behavioral deviation from

the error active behavior that exceeds a specific threshold. We

describe the quantification of behavioral metrics in Sec. 3.1

and explain the thresholds required to find the deviations in

Sec. 3.2. Using CANOX, we uncover three new fundamental

vulnerabilities in CAN’s error handling and fault confinement

mechanism discussed in Sec. 4.

3.1 Architecture and Operation

CANOX consists of a Test Controller (TC) connected to

a controlled test environment containing a Node Under

Test (NUT), as shown in Fig. 4. The test environment includes



a CAN bus connected to three different components. The first

component is the Collision Generator (CG), which generates

packet collisions per the request of TC by injecting a message

with the same ID as the NUT’s message, as explained in Sec. 2.

The second component is the Error State Transceiver (EST),

used by TC to directly read bits from the bus and to set the

NUT’s error state by directly injecting error frames. The last

two components include two Traffic Generators (TG), used

to generate the CAN traffic given the message priority and

the bus load. TC is connected to the CAN bus and to all com-

ponents of the test environment to control their operations.

NUT is placed inside the test environment and controlled by

TC. NUT logs its measured performance metrics into a file

and sends it to the Log Analyzer. The log analyzer analyzes

the NUT’s logs and flags the conditions leading to anoma-

lous changes in NUT’s behavior compared to its behavior at

default error active state.

Behavioral Metrics. CAN error states directly impact two

behavioral aspects: error signaling, and transmission delay

penalties in certain scenarios. Hence, we expect a change in

the error state would result in a change in these two aspects:

(1) error frames and (2) transmission delays. We need two

metrics to quantify these behavioral changes. One challenge

is to monitor passive error frames since they are composed

solely of recessive bits indistinguishable from the idle bus;

hence they are unobservable. To overcome this challenge, we

monitor the Transmit Error Counter (TEC) because it reliably

indicates the presence of errors, even if they are unobserv-

able on the bus. Hence, we define two evaluation metrics:

(1) Standby Delay (SD), to monitor transmission delays, de-

fined as the delay between the moment the message is buffered

and marked as ready for transmission, and the moment it is

successfully transmitted. (2) TEC Value Change (TECC), to

monitor error frames, defined as the change in the TEC value

before and after the message is transmitted.

Test Scenarios. CAN specifies different sets of rules govern-

ing message transmission and error signaling in different error

states. While most of these rules are similar, they differ in spe-

cific cases. Specifically, CAN imposes certain delay penalties

on passive nodes sending successive messages or retransmit-

ting failed messages. Moreover, CAN dictates that passive

nodes signal errors using passive error frames as opposed to

active error frames when they witness errors. Therefore, we

set up three test scenarios covering these cases to exhaustively

assess the behavioral differences between an error passive

node and an error active node under different bus conditions:

(1) Single Transmission: We set NUT to send a single message

periodically, and record the SD and TECC for every trans-

mission. This enables us to assess the impact of additional

penalties on message transmissions in passive nodes.

(2) Single Collision: We set the NUT to experience errors

during its message transmissions, causing its transmissions

to fail and forcing it to retransmit the failed messages. NUT

Algorithm 1 Test Controller Algorithm

1: L←{0%, . . . ,100%}
2: P←{lower,higher,mixed}
3: S←{active,passive}
4: points= L×P×S

5: rounds←{1, . . . ,nrounds}
6: scenarios←{single,collision,successive}
7: SDA← Empty SD Array of Arrays

8: TA← Empty TECC Array of Arrays

9: for s in scenarios do

10: for p in points do

11: for r in rounds do

12: Turn off CG, TG, and NUT
13: Set state of NUT

14: Adjust TG to load and priority

15: if (scen= collision) then

16: Turn CG on

17: Start NUT operation

18: for ntrans in transmissions do

19: Record SD and TECC

20: Compute Average SD for the round

21: Compute Average TECC for the round

22: SDAs,p← Average SD across rounds

23: TAs,p← Average TECC across rounds

24: Pass SDAs to Analyzer

25: Pass TAs to Analyzer

periodically sends a single message. However, the collision

generator induces a single collision every time NUT sends

a new message. Single means that the collision generator

causes a collision to NUT’s initial transmission attempt, but

does not cause any further collisions to its retransmissions.

Finally, for every message transmission (including all of its

retransmission attempts), NUT logs the SD and TECC. This

scenario enables us to monitor the impact of the altered er-

ror signaling mechanism and assess the impact of the delay

penalties imposed against failed message retransmissions.

(3) Successive Transmission: We set the NUT to periodically

send two back-to-back messages to assess the impact of the

additional delay penalties imposed against back-to-back trans-

missions in passive nodes. We mark the second message as

ready for transmission immediately after the first message

is transmitted successfully. Here, NUT records the SD and

TECC for the second message in every transmission cycle.

CANOX Operation. For each scenario, the test controller

sets NUT’s error state using the error state transceiver. It also

sets the traffic load and its priority using the traffic genera-

tors. It then enables NUT to start transmitting. We describe

this process in Algorithm 1. We repeat each scenario for a

number of rounds (nrounds) for every error state (S), and

every traffic load (L) and priority (P). Each round, NUT sends

ntrans pairs of messages and logs the SD and TECC for

each transmission. After each scenario is terminated, the log

analyzer reads the logs and compares SD and TECC for each

priority and bus load pair in the passive case to the active

case as described in Algorithm 2. The log analyzer flags the

scenario and plots the result for further analysis if any passive



Algorithm 2 Analyzer(SDArray,TECCArray,ThSD,ThTECC)

1: loads←{0%, . . . ,100%}
2: priorities←{lower,higher,mixed}
3: SDA← SDArray

4: TA← TECCArray

5: for p in priorities do

6: for l in loads do

7: if (SDAp,l,passive > (SDAp,l,active+ThSD)) then

8: Flag SDAp,l for both states

9: if (TAp,l,passive > (TAp,l,active+ThTECC)) then

10: Flag TAp,l for both states

11: if (SDArray has any flagged elements) then

12: Plot all average SD readings for the scenario

13: if (TECCArray has any flagged elements) then

14: Plot all average TECC readings for the scenario

metrics differ from the active metrics more than the specified

thresholds. Threshold selection is detailed in Sec. 3.2.

Equipment. Our Node Under Test (NUT) comprises an Ar-

duino Uno board connected to a CAN bus shield. The CAN

bus shield contains an MCP2515 CAN controller and an

MCP2551 CAN transceiver. We use one test controller (TC),

one collision generator (CG), two traffic generators (TG), and

one error state transceiver (EST). TC, CG, and each of the two

TGs comprise an Arduino Uno board connected to a CAN

bus shield. We use an MCP2551 as the error state transceiver.

To generate deliberate packet collisions, we use the method

described in Sec. 2.2. We achieve “mixed priority” by having

one traffic generator send high-priority traffic while having

the other generator send low-priority traffic. For communica-

tion between the test controller and different test components,

we use the CAN bus and boards’ digital pins.

3.2 Test Parameters

Test Input Generation. The input space for testing scenarios

becomes intractable with two states, three scenarios, more

than 229 traffic priority levels, and an unlimited number of bus

loads. To reduce complexity, we restrict the priority levels and

bus loads. First, we select only three points for priority levels:

High, Low, and Mixed. These priority levels are justified by

the fact that relative to NUT, any external message on the

bus could be categorized as having either a higher or lower

priority than NUT’s messages. Note that higher priority means

traffic with a lower ID value than NUT’s messages, and lower

priority means traffic with a higher ID value. However, we add

an intermediate point of mixed traffic since the traffic usually

is not strictly higher or lower in normal bus operations.

Second, to reduce the input space of bus loads, we select

five loads: 0%,25%,50%,75%, and 100%. These busloads

are justified because, from NUT’s perspective as it attempts to

transmit, it views the bus as either idle or busy. Nonetheless,

the bus is never always full (100%) or empty (0%) in normal

bus operations. Thus, we add three additional intermediate

points between bus empty and full to comprehensively ob-

serve behavioral trends. Overall, we reduce the input space

into five bus loads, three priority levels, and two states to be

tested in scenarios without losing generality.

Behavioral Metric Threshold Selection. The expected node

behavior is different from a scenario to another. Therefore, we

configure TECC and SD thresholds to different values for dif-

ferent scenarios. We use the CAN standard’s specifications [2]

to specify the metric thresholds for each scenario.

In the single transmission scenario, the active node starts

with an initial T EC = 0, while the passive node starts with

an initial T EC = 159. The standard does not define a time

penalty on single message transmissions against active or

passive nodes. Therefore, we expect the standby delay differ-

ence threshold between states T hSD to be 0µs. For TEC, the

standard states that each successful transmission reduces the

TEC counter by 1 if TEC is 0 < T EC < 256. Since only the

passive node’s TEC lies within that range, we expect this rule

to apply only to the passive node. Hence we set the TECC

difference threshold between states T hT ECC to 1.

In the single collision scenario, the standard defines a

penalty of 8 bit-periods (16µs at 500kbps) against passive

nodes’ retransmissions. Active nodes, on the other hand, do

not have this penalty imposed against them. Hence, we ex-

pect the standby delay threshold between the two states T hSD

to be 16µs. For TEC, the standard states that each collision

increases TEC in both states by 8, and that each successful

transmission reduces it by 1. Since these two rules hold true

for both states, we expect the TECC threshold between the

two states T hT ECC to be 0.

In the successive transmission scenario, the active node

starts at T EC = 0. The passive node starts at T EC = 159. The

standard defines a penalty of 8 bit-periods (16µs at 500kbps)

against passive nodes’ back-to-back transmissions, while no

penalties are imposed against active nodes. Hence we set the

standby delay threshold between states T hSD to 16µs. For

TEC, the standard states that each successful transmission

reduces TEC by 1, for 0< T EC < 256. Since only the passive

node’s TEC lies within that range, we set the TECC threshold

between states T hT ECC to 1.

Calibration. Depending on the equipment and the time mea-

surement method used, delay calculation may be slightly inac-

curate. To account for such inaccuracy, the maximum possible

deviation from the actual value should be calculated and added

to the standby delay threshold T hSD. Initially, in our experi-

ments, the maximum observed deviation was 7.5µs. However,

later in our experiments, we optimized the code correspond-

ing to time measurement. This reduced this error margin to

< 3µs. Similarly, when specific CAN controllers experience a

collision while 248 < T EC < 256, they set TEC to 0 instead

of increasing it by 8, as they do not allow the TEC value to

go above 256. This may result in the passive node having

a slight deviation in its average TECC from the expected

value. Depending on the sample size, the maximum deviation

resulting from this case should be calculated and added to

the TECC threshold (T hT ECC). Initially, in our experiments,
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Figure 5: TEC change and standby delay values for the scenarios identified by CANOX as having an unexpected behavior.

the maximum observed deviation was ≈ 0.03. However, later

in our experiments, we filtered out samples with an initial

T EC ≥ 248. This reduced the error margin to 0.

4 Discovered Vulnerabilities

CANOX detected that both the single collision and succes-

sive transmission scenarios yield unexpected behaviors. In

the single collision scenario, CANOX detected that the aver-

age SD and TECC difference between error active and error

passive states violated the specified thresholds under multiple

testing conditions. For the successive transmission scenario,

CANOX detected multiple violations of the SD threshold.

However, it did not detect any violations of the TECC thresh-

old. For the single transmission scenario, CANOX did not

detect any unexpected behavior as the TECC and SD values

remained below the specified thresholds for all bus load and

priority pairs. Fig. 5 illustrates the discrepancies for the single

collision scenario’s TECC and SD, and the successive trans-

mission scenario’s SD. Below, we further analyze the plots

and provide details of each discovered vulnerability.

4.1 Passive Error Regeneration

Detection. In the single collision scenario, CANOX detected

that the passive node violated the given TEC change threshold

T hT ECC for all priorities and bus loads ≥ 25%. As shown in

Fig. 5a, we observe that the active node had a fixed TECC

value (i.e., 7) regardless of the bus load or priority. Whereas

the TECC value for the passive node was dependant on the bus

load but not the priority. Further, we observe that the passive

node had a TECC of 128 at a 100% bus load. This means that

at 100% bus load, the node went from the error passive to the

bus off state after encountering a single collision.

Test Results Explanation. Among the above observations,

we highlight two findings. (1) Certain silent (passive) errors

were present on the bus, visible only to the passive node. (2)

These errors pushed the node from the error passive to the

bus off state. These findings can be explained as follows.

A passive error frame consists of 14 recessive bits as shown

in Fig. 1. However, the number of recessive bits at the end of a

frame is 8, and the minimum bus idle time is 3 bit-periods [2].

This implies that the minimum number of recessive bits be-

tween the dominant acknowledgment bit of one frame and

the dominant start-of-frame bit of any other frame on the bus

is only 11 bit-periods, which is shorter than the time needed

to transmit a passive error frame. Now, in the single collision

scenario, when the passive node encounters a collision, it tries

to transmit a passive error frame after the dominant acknowl-

edgment bit of the frame involved in the collision. However,

as the voltage levels for the recessive bit of the passive error

frame and the idle bus are the same, other nodes on the bus

fail to detect that the passive node is transmitting a passive

error frame. Because the bus is busy, other nodes start trans-

mitting messages before the conclusion of the passive error

frame. This causes an error in the delimiter part of the passive

error frame interrupting its transmission. This interruption is

interpreted by the passive node as a form error, resulting in

the node raising its TEC by 8 and attempting to signal the

new error by sending a new passive error frame. However,

the new error frame is also interrupted in the same manner as

the first frame. This continuous cycle repeats until the node’s

TEC reaches 256 pushing the node into the bus off state.

Vulnerability Description. The CAN standard states that for

a passive node to terminate its passive error frame correctly,

the bus must be idle for at least an additional 3 bit-periods be-

tween two consecutive frames. However, the standard fails to

provide a way of enforcement or explain the consequences of

not fulfilling this rule [2,28]. CANOX reveals that due to the

discrepancy between an error frame length, and the minimum

number of recessive bits required between two consecutive

frames, this rule cannot be enforced. The consequences of

this failure lead to what we call the passive error regenera-

tion vulnerability. Exploiting this vulnerability, an attacker

can interrupt a victim’s passive error frame by transmitting a

seemingly benign message frame. As such, this vulnerability

allows it to silently turn one error into a series of errors.

4.1.1 Exploit 1: Single Frame Bus Off Attack (SFBO)

Exploit. We exploit the passive error regeneration vulnera-

bility to craft a novel DoS attack called the Single Frame

Bus Off (SFBO). Using SFBO, an attacker targets only one

frame from the victim to successfully push it to the bus off

state where it cannot transmit or receive any messages. SFBO

proceeds through four steps as described in Fig. 6.
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Figure 6: Illustration of the single frame bus off attack ex-

ploiting the passive error regeneration vulnerability.

Step-1: The attacker first targets a victim’s message with a

known ID, and forges a message with the same ID as the

victim’s ID but with a higher priority content. Throughout the

paper, a higher priority content means a content of a shorter

length or more leading zeros. Conversely, a lower priority

content is either longer or with fewer leading zeros.

Step-2: The attacker then transmits the forged message si-

multaneously with the target message causing a deliberate

collision, as explained in Sec. 2. Since the victim’s message

content has lower priority, it encounters a bit-error. This forces

the victim to stop transmission of its message, and transmit an

active error frame. Then, due to the victim’s active error frame

consisting of dominant bits, the attacker encounters a bit-error.

The attacker stops message transmission and joins the victim

in transmitting an active error frame. Moreover, according

to the CAN standard, the automatic retransmission feature

of a node is enabled by default. This means that the CAN

controllers of both the victim and attacker retransmit their

failed messages. Unfortunately, this leads to 16 back-to-back

collisions. After each such collision, both of them increase

their TEC values by 8. Hence, after the 16th collision, both

fall into the error passive state with a TEC value of 128.

Step-3: The message retransmission attempts by the victim

and attacker continue for one more round. However, in this

round, the victim generates a passive error frame that does

not interrupt the attacker’s message. This allows the attacker

to transmit their message successfully. Hence, the attacker

decreases its TEC by 1 and gets back to the error active state.

Step-4: This is the point where the attacker exploits the pas-

sive error regeneration vulnerability. At this step, the attacker

causes an error in the victim’s passive error frame that was

generated in the previous step by sending a message with an

arbitrary ID. We refer to such a message as a clutter message.

As such, the attacker sends 15 back-to-back clutter messages.

This causes regeneration of passive error frames, and the vic-

tim’s TEC increases rapidly by 8 after every message until it

reaches 256. This way, the attacker succeeds in pushing the

victim to the bus off state by targeting a single message. We

note that, if external higher priority messages get transmitted

while the attack is taking place, the attack will not be inter-

rupted but instead helped, as the higher priority traffic will

play the same role as the clutter messages. In this case, the

attacker may carry out the attack with fewer clutter messages.

Impact. In the existing DoS attack (OBA) [4], the attacker

follows the first three steps described for SFBO, to push the

victim to the error passive state. Thereafter, the attacker needs

to induce collisions in rounds of attacks; each round takes

an entire periodic transmission cycle, with at least 18 new

victim’s messages (rounds) to push the victim from the error

passive state to the bus off state. On the contrary, the attacker

in SFBO immediately exploits the passive error regeneration

vulnerability to push the victim to the bus off state in the same

attack round. This reduces the number of attack rounds from

a minimum of 19 to a maximum of 1. Hence, the impacts of

SFBO are profound, not only because of its speed in pushing

the victim to the bus off state, but also because this swiftness

allows the attacker to keep the victim in the bus off state

persistently, as discussed in Sec. 4.2.1. In Sec. 6.3, we provide

a comprehensive comparison between SFBO and OBA.

4.1.2 Exploit 2: Setting Victim’s TEC

Exploit. The passive error regeneration vulnerability can be

used to easily set the TEC of a victim node to a chosen value

between 135 and 256. This can be done by following the first

three steps of SFBO, but controlling the number of clutter

messages (denoted by NClutter) in Step 4, as discussed in

Sec. 4.1.1. When NClutter = 15, the victim falls into the bus

off state. However, for any NClutter < 15, the victim’s TEC

can be calculated as TECVictim = 135+(8∗NClutter).

Impact. The ability to selectively set the victim’s TEC value

provides the attacker nearly full and immediate control of

the victim’s error states. The applications of such an exploit

are versatile. For example, in Sec. 4.3.1, we explain how this

exploit plays a critical role in identifying a message source.

4.2 Deterministic Recovery Behavior

Detection. In the single collision scenario, CANOX detected

that the passive node violated the given standby delay thresh-

old T hSD for all priorities with bus loads ≥ 25%. In Fig. 5b,

we make three main observations. (1) The delay in the pas-

sive node is correlated with the bus load. (2) The SD curves

in Fig. 5b are correlated with the TECC curves (Fig. 5a).

(3) Most importantly, for low and mixed priorities, the pas-

sive node has an SD≈ 31.7ms at 100% bus load.

Test Results Explanation. The CAN standard states that

when a node goes to the bus off state, it stays there until

observing at least 128 instances of 11 recessive bits on the

bus. We validate that the SD value of 31.7ms, mentioned in the

third observation, is approximately equal to the time needed

to observe 128 instances of 11 recessive bits. This points to

a very interesting behavior revealed by CANOX. After the

node fails to transmit its message due to collision and enters

the bus off state, the unsent message remains stuck in its CAN
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Figure 7: Identifying the error state of a victim by causing a collision and tracking TEC.

controller’s transmission buffer and gets transmitted exactly

when the node gets back to the error active state.

Vulnerability Description. The CAN standard does not

clearly define what to do with an unsent message if a node

enters the bus off state. CANOX reveals that the node trans-

mits such an unsent message at the exact moment it recovers

(i.e., transitions back into the error active state). This allows

an attacker launching a bus off attack to predetermine the ID

and content of the messages sent by the victim at recovery.

4.2.1 Exploit: Persistent Bus Off

Exploit. An attacker may exploit the deterministic recovery

vulnerability as follows. The attacker targets a victim’s mes-

sage ID, induces errors through collisions, and pushes the

victim to the bus off state. This prevents the victim’s message

from being sent and pre-determines the ID and content of the

message sent at the moment the victim recovers. Equipped

with such information, the attacker can re-attack the message

to prevent the victim’s recovery, persistently pushing it into

the bus off state. Hence, the attacker may persistently stop

valid transmissions from the victim by first launching one

instance of SFBO against a message, and then continuously

launching instances of SFBO against every recovery attempt

of the victim. We discuss how the attacker may estimate the

victim’s recovery time in Sec. 5.3.

Impact. The existing DoS attack, OBA, requires a long time

to push the victim to the bus off state, and provides no clear

way to prevent victim’s recovery, rendering the DoS attack

highly ephemeral. The deterministic recovery (coupled with

the passive error regeneration) vulnerability poses a critical

threat, as an attacker may exploit this to persistently prevent

the node’s recovery attempts as illustrated further in Sec. 5.

4.3 Error State Outspokenness

Detection. In the successive transmission scenario, CANOX

detected that the error passive node violated the given standby

delay threshold T hSD for all low and mixed priority bus loads

above 25%. In Fig. 5c, we make three main observations.

(1) The difference in the SD values between passive and

active nodes far exceeded the threshold for low and mixed

priority bus loads above 25%. (2) The passive node had an

extra SD of ≈ 240µs over the SD of the active node for low

priority at 100% bus load. This delay is equivalent to one

8-byte message. (3) For low priority traffic, the SD of the

active node was independent of the bus load.

Test Results Explanation. CAN imposes a suspend trans-

mission penalty of 8 bit-periods on passive nodes in the cases

of successive transmissions and retransmissions. This causes

the second message in the passive node sending two succes-

sive messages to witness a priority reduction. This reduction

causes the second message to lose arbitration to any pending

message on the bus, even if the pending message has a lower

priority ID. Hence, at high bus loads in the successive trans-

mission scenario, the second message has an extra delay of

around one message even in the case of low priority traffic.

Vulnerability Description. CANOX reveals that a passive

node will suffer from a priority reduction affecting succes-

sive message transmissions and retransmissions. The priority

reduction can be easily spotted and used by an attacker to

differentiate between a message sent by an active node and a

message sent by a passive node. We refer to this as the error

state outspokenness vulnerability.

4.3.1 Exploit: Message Source Identification

The message source identification refers to the procedure for

determining if two messages originate from the same victim.

This can be achieved by first pushing the victim into the error

passive state by using one message, and then determining

if the source of the second message is in the error passive

state. The victim can be pushed into the error passive state

by exploiting the passive error regeneration vulnerability as

discussed in Sec. 4.1.2. Below, we propose a novel technique

to determine the error state of the victim over the bus by

exploiting the error state outspokenness.

Determining Victim’s Error State. An attacker can deter-

mine the victim’s error state through the following four steps.

Step-1: The attacker forges a message with the same ID as

the victim’s message, but employs a lower priority content.

Step-2: The attacker induces a deliberate collision of their

message with the victim’s message. As such, the attacker en-

counters a bit-error since it transmits a recessive bit while the

victim is sending a dominant bit. The attacker raises an ac-

tive error frame, interrupting the victim’s transmission. This

causes both nodes to retransmit their messages.



Step-3: As illustrated in Fig. 7b, if the victim is in the error

passive state, it will not attempt to retransmit at the same time

as the attacker due to the suspend transmission period penalty

placed on its retransmissions. Hence, no further collisions will

take place, and the attacker’s message is successfully trans-

mitted. This is followed by the victim’s message. Conversely,

as illustrated in Fig. 7a, if another collision happens, it means

that the victim is in the error active state. In this case, the

attacker disables retransmissions to prevent further collisions.

Step-4: As a result of the previous step, if the attacker’s TEC

changes by only 7, they determine the victim to be in the error

passive state. Otherwise, if the attacker’s TEC changes by 16,

the victim is considered to be in the error active state.

Impact and Applications. The applications of the source

identification technique are manifold. For example, an at-

tacker may use it to identify all the messages transmitted by

a target ECU, identify an ECU’s function, or map the entire

CAN bus. All the aforementioned goals could help an attacker

that wants to launch a targeted DoS attack or reverse engineer

the network traffic to perform message injections. In Sec. 5.1,

we explain how this exploit could be used to map an entire net-

work. We note that this source identification technique is not

limited to periodic messages, and could be used to map any

message as long as its ID and arrival time are deterministic.

Command-response messages and event-triggered messages

are two examples of aperiodic messages that satisfy these

conditions. We take advantage of this fact in the victim identi-

fication stage of the STS as discussed in Sec.5.2. To the best

of our knowledge, this is the first network mapping technique

to map aperiodic messages without using special hardware.

5 STS: Scan-Then-Strike Attack

To illustrate the impact of the discovered vulnerabilities, we

develop an advanced multi-staged attack, Scan-Then-Strike

Attack (STS), which exploits the combination of all discov-

ered vulnerabilities. A remote attacker with no previous

knowledge of the vehicle’s internal network, number of ECUs,

ECU functions, message formats, or IDs is able to: (1) map

the internal network, determining the number of transmitting

ECUs, and identify the sources of all periodic messages, (2)

identify, among the mapped ECUs, an ECU that performs a

safety-critical function, (3) learn how the ECU recovers from

a DoS attack in the form of SFBO, and (4) launch a persis-

tent DoS attack against the ECU by constantly relaunching

continuous instances of SFBO against its recovery attempts.

STS differs from previous attacks in three aspects. First, it

does not assume that the attacker is already knowledgeable of

the vehicle’s network map and safety-critical ECUs but rather

gains this knowledge by exploiting the newly discovered vul-

nerabilities. Second, the immediate and swift nature of SFBO

allows it to be launched against any ECU as opposed to the

previous attacks that worked only against certain ECUs, as

we will explain in Sec. 6.3. Lastly, its impact is persistent, as

opposed to the previous volatile attacks.

Algorithm 3 Network Mapping Algorithm

1: list← Get list of ids and periods

2: Based on period, sort list
3: while list has unassigned ids do
4: Get shortest−period unassigned idsmall
5: Create a new ecui, assign idsmall to ecui
6: while list has unchecked ids do
7: Get longest−period unchecked idbig
8: idBigResolved← false

9: while idBigResolved= false do
10: Push idbig to Passive

11: Check idsmall state

12: if idsmall is passive then
13: Assign idbig to ecui
14: idBigResolved← true

15: else if idsmall is active then
16: Leave idbig unassigned

17: Mark idbig as checked for ecui
18: idBigResolved← true

19: else
20: idBigResolved← false

21: Wait for TEC of the source of idbig to be zero

5.1 Stage 1: Network Mapping

The first stage of STS is to perform the network mapping that

relates the CAN bus messages to the transmitting ECUs. To do

this, STS exploits the error state outspokenness vulnerability

as explained in Sec. 4.3.1. Essentially, it performs checks on

message pairs to see if they originate from the same ECU.

This check is conducted by pushing the sender of one of the

two messages to the error passive state, then checking the

other message to see if it comes from an error passive ECU.

We highlight that to successfully complete the check, it is

critical to ensure that the sender stays in the error passive state

until the completion of the check. However, satisfying this

condition for a real-world ECU that sends multiple messages

at different frequencies is challenging.

Consider an ECU that transmits two messages with differ-

ent IDs, where one has a much longer period than the other.

In this case, if the attacker pushes the ECU to the error pas-

sive state using the short-period message, the ECU would

have transmitted many instances of this short-period message

before any instance of the long-period message is transmitted.

As a result, the successful transmission of the short-period

messages brings down the TEC of the ECU, taking it back

to the error active state before the check is completed. This

invalidates the checking procedure. To address this challenge,

the attacker should always pick the long-period message to

push the ECU to the error passive state and then pick the

short-period message to perform the check.

As shown in Algorithm 3, the network mapping stage of

STS consists of the following steps. (1) The attacker records

the bus traffic and makes a list of all the message IDs on

the bus, sorted by their periodicity. (2) The attacker selects

the message with the shortest period in the unassigned list of

messages and assumes that a new ECU transmits it. (3) They

select the message with the longest period in the unassigned
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list of messages and push its sender to the error passive state.

(4) They check whether the selected shortest-period message

is transmitted by an error passive ECU. If true, the selected

longest-period message is assigned to the ECU sending the

selected shortest-period message. If false, it is marked as not

transmitted by the ECU. If the check is inconclusive, it is

repeated. In all cases, the attacker waits for the TEC of the

ECU (that they pushed to the error passive state) to go back

to 0 since they do not want to push it to the bus off state

unintentionally. The attacker repeats Steps 3-4 until the ECU

is mapped to all its messages. Further, they repeat Steps 2-4

until all ECUs are fully mapped to their messages.

5.2 Stage 2: Victim Identification

In the network mapping stage, the attacker maps every ID to

a specific sender. However, the attacker does not know the

function of each sender. Here, the attacker’s goal is to identify,

among the mapped ECUs, the victim ECU that performs a

specific safety-critical function (e.g., braking). To achieve

that, STS exploits the error state outspokenness vulnerability,

in addition to vehicle diagnostic protocols. Diagnostic pro-

tocols such as On-Board Diagnostics (OBD-II) define sets

of request messages that trigger a response message from

an ECU that performs a specific function. For example, a

diagnostic message requesting information about the anti-

lock braking system (ABS) will trigger a response from the

electronic brake control module (EBCM).

Victim identification proceeds through the following four

steps. (1) The attacker identifies a request to which the victim

responds. For example, the VIN information comes from the

ECM, transmission information comes from the TCM, and

ABS information comes from the EBCM. The request mes-

sage identification task could be carried out by acquiring an

off-the-shelf OBD-II scanner, selecting the vehicle’s make

and model, selecting a specific vehicle function (i.e., ABS),

and recording the request message sent by the scanner. This

step could be carried out offline since its only goal is to iden-

tify the request message to which the target ECU responds.

(2) They then send a forged request message on the CAN

bus and measures the response time. (3) Next, they send an-

other request message and, following the technique described

in Sec. 4.3.1, they attack the response message, pushing its

sender to the error passive state. (4) Finally, they check every

mapped ECU to see which one is in the error passive state.

This concludes the victim identification stage. Now that the

attacker knows the victim ECU, it can be targeted using one

of its periodic messages in the next stage of STS.

5.3 Stage 3: Learning Victim’s Recovery

In this stage, STS exploits the deterministic recovery vulner-

ability to learn how the victim recovers. This enables the

attacker to prevent the victim’s recovery attempts paving the

path for a persistent DoS attack. As such, STS needs to iden-

tify the victim’s recovery time and the recovery message.

Recovery Messages. As discussed in Sec. 4.2.1, when an

attacker pushes an ECU to the bus off state by attacking a

message, the same attacked message will be transmitted at

recovery. However, it does not always get transmitted alone.

In many ECUs, especially those that apply long recovery

intervals, additional messages will be buffered during the

recovery interval. As a result, once the ECU recovers and

sends the attacked message, it attempts to transmit all the

other buffered messages. We call such buffered messages the

trailing messages, which are shown in Fig. 8. Consequently,

upon recovery, the ECU transmits the attacked message fol-

lowed by a number of trailing messages. STS exploits this

fact to determine an optimum ID that can easily be attacked

persistently in every recovery cycle. As such, the optimum

ID needs to satisfy two conditions: (1) When attacked, it is

the first recovery message. (2) When attacked, the first trail-

ing message has the same ID. Usually, this condition will be

satisfied if the attacker picks the ID with the shortest period.

However, if an ECU has multiple IDs with the same period,

the attacker must find which one satisfies these conditions.

Time Recovery Model. After an ECU enters the bus off state,

it spends a specific time interval before getting back to the

error active state. We call this interval the recovery interval.

The CAN standard states that a bare minimum recovery in-

terval corresponds to the time in which the ECU observes

128 instances of 11 recessive bits. However, many design-

ers choose recovery intervals that are longer than that. As

such, multiple recovery models exist on different ECUs. We

identify the following four broad models, which can be specif-

ically determined by launching multiple continuous instances

of SFBO and observing the victim’s recovery time.

(1) Bare Minimum: The ECU recovers after observing 128

instances of 11 recessive bits, CAN’s minimum requirement.

(2) Fixed: The ECU recovers after a fixed recovery interval.

(3) Sequenced: The recovery interval follows a sequence of

different intervals. For example, the first time it goes into

the bus off state, it recovers after x ms. If recovery fails, it

reattempts recovering after y ms such that y≥ x, and so on.

(4) Random: The ECU recovers after a random interval. With

no way to expect when the ECU (following this model) recov-

ers, the attacker cannot suppress its recovery synchronously.

Hence, we use the re-appearance of the attacked message to

signal the ECU’s recovery and attack the first trailing message.
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Figure 9: Demonstration of STS persistently preventing the

victim’s recovery from the bus off state.

If the attacked message is the optimum ID, the first trailing

message will have the same ID as the attacked message. This

facilitates the attack, as the attacker does not need to guess and

change the ID used in SFBO to match the trailing message

at every recovery prevention instance.

5.4 Stage 4: Recovery Prevention

Equipped with the information from the previous three stages,

STS proceeds with this last, but the most critical stage where

STS exploits SFBO to persistently prevent the victim’s recov-

ery. As opposed to previous DoS attacks that provided no way

of achieving a persistent suppression of the victim, the swift

nature of SFBO allows STS to realize such a goal. This stage

proceeds through the following three steps. (1) The attacker

launches an instance of SFBO against the victim’s optimal

ID (determined in Stage 3 of STS) as discussed in Sec. 4.2.1.

(2) They predict the recovery time of the victim based on the

time recovery model learned in Stage 3 of STS. (3) They pre-

vent the victim’s recovery by re-launching another instance

of SFBO against the optimal ID. (4) They continuously loop

around Steps 2 and 3 to suppress the victim persistently, as

illustrated in Fig. 9. Appendix B provides further details on

Identifying and attacking different recovery models.

6 STS Evaluation

We report our results corresponding to each attack stage of

STS evaluated on a CAN bus testbed and a real vehicle. Ad-

ditionally, we compare the proposed attack, SFBO, with the

Original Bus Off Attack (OBA) [4].

6.1 Evaluation Platforms

For in-depth analysis, the attack evaluation was carried out

on a CAN bus testbed and a 2011 ExpCar1. The attack code

utilized 15kB of program storage and 1.5kB of dynamic mem-

ory. On the testbed, we used five nodes. Each node comprised

an Arduino Uno board equipped with a CAN bus shield. One

node acted as the attacker, and the other four emulated benign

nodes. All nodes were connected to a 500kbps CAN bus ter-

minated with 120Ω on each end. For the vehicle, we used an

Arduino Uno board equipped with a CAN bus shield as the

attacker. We used the OBD-II port to connect directly to the

CANH and CANL wires of the vehicle’s high speed CAN

1We decided to anonymize the make and model of our experimental

vehicle since STS exploits fundamental characteristics of CAN that are

common to all CAN systems and not limited to this vehicle

bus, which operates at a 500kbps baud rate.

6.2 Summary of Results

Network Mapping. To map the network, the attacker first

makes a list of all the periodic message IDs on the bus and

calculates the average period for each ID by recording the

arrival times of N messages. We observed that certain low

priority messages have higher jitter components than higher

priority IDs, making their period length slightly change from

one cycle to another, with a standard deviation of≈ 0.6ms. To

account for such messages, we tried to pick an N that makes

the error margin for the calculated period low enough to facil-

itate our source identification task. However, N represented a

tradeoff, a high N lowered the error margin but increased the

calculation time, a small N decreased the calculation time but

increased the error margin. To facilitate the use of preceded

ID frame [4] in the source identification step, we wanted to

keep the error margin around the length of an 8-byte mes-

sage (≈ 240µs). Through a grid search, we found that N = 20

represented the optimum sample size.

On the testbed, the benign nodes were configured to trans-

mit a total of 20 different benign message IDs with different

periodicity ranging between 10ms and 100ms. We identified

all 20 different message IDs with correct periodicity in ≈ 9s.

Next, using Algorithm 3, we were able to identify all 4 trans-

mitting ECUs and map all messages to their source ECUs

with 100% accuracy. The mapping took ≈ 3mins. On the ve-

hicle, we identified all 50 periodic message IDs in ≈ 6mins.

The longest period was 5s, while the shortest was 9ms. Next,

we were able to identify 4 transmitting ECUs on the bus and

map all IDs to their sources with 100% accuracy, as shown in

Table 1. The mapping took ≈ 9mins.

Using Algorithm 3, we explain this time frame by noting

that the overall mapping time Tmap = ∑
4
ECU=1 TECU . Here,

Tmap is the overall mapping time, and TECU is the time re-

quired to map a single ECU. For a single ECU, the majority

of the time is spent in either pushing an ECU to the error

passive state, checking an ECU’s error state, or letting an

ECU recover from the error passive state (lines 10, 11, and

21). To push a message source to the error passive state or

to check the state of a message source, we first observe an

instance of the message, then intercept the next one (i.e., a

total of 2 cycles). Additionally, following every check, we

allow enough time tcool for the long-period ID source to go

back to T EC = 0. Finally, because of jitter, some messages

require more than one attempt to be mapped (i.e., lines 19 and

20). Therefore, the time required to map one ECU becomes,

TECU = (2∗Nids ∗ (Ts +Tavg))+(tcool ∗Nids)+(Tjitter). Here,

Nids is the number of unmapped IDs on the bus, Ts is the

cycle length of the shortest-period ID, Tavg is the average cy-

cle length of the unmapped IDs, and Tjitter is the time lost

in failed mapping attempts. On our vehicle, ≈ 2mins were

spent changing or checking error states, ≈ 3.8mins were the

cool-off time, and ≈ 3.2mins were caused by jitter.



Table 1: Network mapping results for a 2011 ExpCar1.

ECU # IDs ECU Function

ECU-1 0C5, 0C1, 1E5, 1C7, 1CD, 1E9, 184, 334, 2F9, 348, 34A, 17D, 17F, 773, 500 Electronic Brake Control Module (EBCM)

ECU-2 0F1, 1E1, 1F3, 1F1, 134, 12A, 3C9, 3F1, 4E1, 771, 4E9, 138, 514, 52A, 120 Body Control Module (BCM)

ECU-3 199, 0F9, 19D, 1F5, 4C9, 77F Transmission Control Module (TCM)

ECU-4 0C9, 191, 1C3, 1A1, 2C3, 3C1, 3E9, 3D1, 3FB, 3F9, 4D1, 4C1, 4F1, 772 Engine Control Module (ECM)

Victim Identification. We set up each ECU on the testbed to

respond to a specific ID (per ECU). We were able to map each

ECU’s response to its respective ECU with 100% accuracy.

On the vehicle and using OBD-II requests, we were able

to identify the functions of the mapped ECUs by mapping

OBD-II responses as described in Sec. 5.2. Table 1 shows the

identification results. To the best of our knowledge, this is the

first solution that could map triggerable, aperiodic messages

with 100% accuracy without any special equipment.

Learning Victim’s Recovery Behavior. On the testbed, two

ECUs were set up to implement a fixed interval recovery

model with a 35ms interval. Two other nodes were set up to

implement the bare minimum model. We were able to learn

the recovery models for all ECUs. Further, using SFBO, we

were able to successfully suppress all nodes, one at a time,

by attacking a single message, as explained in Sec. 4.1.1. For

all ECUs, the optimum attack ID was identified as the ECU’s

message ID with the shortest period. On the vehicle, we suc-

cessfully evaluated the SFBO technique on the four mapped

ECUs. To ensure the ECUs truly transitioned to the bus off

state, we recorded the traffic after every attack and observed

the lack of any IDs that belonged to the mapped ECU. This

also validated our mapping results. The time recovery model

for EBCM and BCM was identified as the sequenced inter-

vals. For the TCM and ECM, it was identified as the random.

Additionally, for all ECUs, we were able to identify the op-

timum attack ID satisfying the two conditions mentioned in

Sec. 5.3. Table 2 shows the optimum attack ID for each ECU.

Table 2: Suppression rates for different ECUs on ExpCar1.

ECU # Function Recovery Model Optimum ID Srate

ECU-1 EBCM Sequenced 0C1 97.5%

ECU-2 BCM Sequenced 0F1 91.4%

ECU-3 TCM Random 0F9 85%

ECU-4 ECM Random 0C9 83%

Recovery Prevention. To assess the success of the attack, we

define a metric called suppression rate (Srate) that describes

the percentage of time the victim is in the bus off state. Let

tnormal and tattack be a period of time when the attack is not

running and when it is running, respectively. Also, let nnormal

and nattack be the number of target message IDs appearing on

the bus during tnormal and tattack, respectively. The suppression

rate is calculated as Srate = ((nnormal−nattack)/nattack)∗100.

On the testbed, using the techniques described in Sec. 5.4,

Table 3: Comparison of suppression rates between OBA and

SFBO in stage 3 and 4 of the STS attack.

OBA

Srate

SFBO

Srate

ECU

#

Message

Periods

(ms)

Recovery

Model

# OBA

Attack

Rounds

Bus

Load:

0%

Bus

Load:

100%

All

loads

ECU-1 10,20,50,90 Bare Min. 21 1.3% 13.2% 99.9%

ECU-2 10,20 Fixed 20 14.8% 14.8% 99.9%

ECU-3 10,50 Fixed 19 15.5% 15.5% 99.9%

ECU-4 10,20,50,100 Bare Min. 21 1.3% 13.2% 99.9%

we were able to achieve an Srate of 100% for at least 10s on

all ECUs. After running the attack for 30 minutes, the average

Srate remained above 99.99%. On the vehicle, as shown in

Table 2, using the techniques described in Sec. 5.4, we were

able to achieve an average Srate of 97.5%, 91.4%, 85%, and

83% for the EBCM, BCM, ECM, and TCM, respectively. The

lower suppression rate on the vehicle, compared to the testbed,

is due to the higher jitter in vehicular environments, leading

the attacker to occasionally lose synchronization.

6.3 Comparing SFBO to OBA

We compare the impact of using OBA [4] instead of SFBO

in the third and fourth stages of STS. Specifically, we assess

their impact on the suppression rate of STS. Additionally,

we compare the feasibility of OBA and SFBO against ECUs

transmitting multiple message IDs.

Swiftness. With SFBO, only one attack round is required to

transition a node from the error active state to the bus off

attack. Conversely, OBA required a minimum of 19 rounds of

attacks, 1 round to transition the node from the error active

state to the error passive state, and 18 attack rounds to transi-

tion it from the beginning of the error passive state to the bus

off state. Essentially, crossing the error passive state into the

bus off state previously represented the unresolved challenge

in OBA. As shown in Fig. 10, in comparison to ≈ 5ms taken

by SFBO, OBA required around 180ms, making the fastest

OBA attack 36 times slower than SFBO.

We note that 19 is the theoretical minimum number of

rounds for OBA. In real-world cases, the number of rounds

will be bigger. We assess the swiftness of SFBO and OBA

on the testbed by measuring the time required to increase a

victim’s TEC from 0 to 256 for different ECUs. While SFBO

pushed TEC to 256 in≈ 5ms regardless of the ECU, OBA was

ECU-dependant, taking 21, 20, 19 and 21 rounds, and ≈ 210,

200, 190 and 210ms for ECUs 1, 2, 3 and 4, respectively.
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Figure 11: Illustrating the impossibility of OBA when ECU

diversity exceeds 8.

Impact on Suppression Rate (Srate). To compare the im-

pact of using OBA instead of SFBO on Srate, we repeated

stage 4 of the STS on the testbed under various loading con-

ditions using OBA. While Srate remained constant for nodes

with a fixed interval model, the suppression rates changed

for the ECUs that implement a bare minimum model. This is

because the busier the bus gets, the slower the instances of

11 recessive bits become, and the slower the node recovers.

As shown in Table 3, while Srate remained above 99.99% for

SFBO, it ranged between 1.3% and 15.5% when using OBA.

ECU Diversity and Attack Feasibility. To explain why

OBA requires more attack rounds with some ECUs, we note

that OBA pushes the victim to the bus off state by launching

rounds of attacks, each round increases TEC by 7. However,

this is only true if the ECU sends one periodic ID. For ECUs

sending multiple IDs, between one attack round and the next,

other messages with different IDs will be transmitted, de-

creasing TEC by 1 with every transmission. This reduces the

effective TEC change to be less than 7 for each attack round,

resulting in increasing the number of rounds required for the

attack. As such, we define a metric named ECU diversity,

which represents the ratio between the overall transmission

rate of the entire ECU and the transmission rate of its fastest

transmitting ID. The lowest ECU diversity ratio is 1, which

implies that the ECU only transmits one ID.

We compare the impact of the diversity ratio on the feasi-

bility and swiftness of both SFBO and OBA. We set up an

ECU to send multiple messages with different IDs. One ID

was chosen as the target ID. The ECU increased its diversity

ratio in steps from 1 (ECU only sends the target ID) to 10

(ECU sends the target ID along with 9 other IDs with the

same period), and recorded the minimum time taken to push

the ECU to the bus off state at each step, as well as the mini-

mum number of attack rounds. As shown in Fig. 11, while the

diversity ratio had no impact on SFBO, the time, and the num-

ber of rounds taken by OBA, increased exponentially. Most

importantly, at a diversity ratio of 8, the minimum attack time

and the minimum number of attack rounds for OBA tended to

infinity. This means that OBA is impossible to launch against

an ECU with a diversity ratio of ≥ 8.

7 Discussion

Static Analysis of CAN Standard. CAN is not described in

a formal language. As a result, attempts to analyze it for vul-

nerabilities using formal approaches, such as static analysis or

model checking, require a tedious modeling process that often

entails imprecision. Such imprecision could be caused by a

number of reasons. For instance, abstract and vague parts of

the standard could force the modeler to make assumptions that

may not always reflect real implementation. Similarly, model-

ing a single component of the standard (e.g., error handling)

ignores interactions between this and other components. An

example of these two points is the deterministic recovery be-

havior vulnerability. Neither does the standard mention what

to do with buffered messages when the node goes into the bus

off state (vagueness) nor does it consider this issue as part of

the error handling component. In contrast, CANOX speeds

up this process and makes it more accurate by dynamically

checking a real-world embodiment of the standard for vul-

nerabilities. Once a vulnerability is found, it is easy to check

whether a standard or an implementation problem causes it.

Impact of Operating in Error Passive State. The error pas-

sive state was intended to offer a degree of protection against

faulty nodes. Changing the error signaling method to transmit

the passive error frame and reducing message priorities in

certain scenarios, allowed CAN to operate in the presence of

a faulty node. This also protected other nodes from engaging

in a self-destructive behavior in the case of successive colli-

sions. A good example of that is OBA, where by reducing the

priority of the message retransmissions in the error passive

state, the victim is able to break the time synchronization with

the attacker. Hence, this protection slows down OBA, making

it an ineffective DoS attack. However, CANOX reveals that

these protections have an undiscovered, self-defeating side.

Not being able to signal errors in a way that is apparent to

all other nodes allows other nodes to step over passive error

frames, generating a different kind of errors (form errors).

This leads to the passive error regeneration vulnerability that

an attacker can easily exploit to launch a swift DoS attack

(SFBO) against a CAN node. Similarly, while priority reduc-

tion of an error passive node may offer some protection to



CAN, it also reveals more information than necessary about

the node. This leads to the error state outspokenness vulnera-

bility, which can be exploited to identify the node’s messages.

Other Uses of the Discovered Vulnerabilities. While we

chose to present an advanced DoS attack to combine all the

vulnerabilities into a single multi-staged attack, the discovered

vulnerabilities could have other uses. For example, the source

mapping technique described in Sec. 4.3.1 could be used

for reverse engineering purposes. Similarly, recent works [1]

have shown that an attacker may be able to impersonate a

victim node on the CAN bus while evading intrusion de-

tection systems (IDS) by being in the error passive state.

Setting the victim’s TEC as described in Sec. 4.1.2 comes

very handy for such a threat model. Furthermore, in systems

where retransmissions are disabled, such as Time-Triggered

CAN (TTCAN), the passive error regeneration vulnerability

could be used to silently keep a node in the error passive

state, causing a victim to miss deadlines, in case of successive

transmissions, or allowing an attacker to inject messages in its

place. Since the victim will not retransmit any failed messages

or raise any active error frames, the injection may go unde-

tected, especially if coupled with an IDS evasion technique

such as the one just mentioned.

OBA vs. STS in Real World. The practical impact of the

swiftness and persistence of STS is serious. For instance,

STS is able to suppress the Electronic Brake Control Module

(EBCM) continuously for ≈ 2.4s at a 100% suppression rate

(97.5% over a 15-minute period). Consider a modern vehi-

cle employing its adaptive cruise control mode and leaving

a two-second-distance between itself and a vehicle ahead of

it (2-second-rule). We can see that STS can completely dis-

connect the brakes long enough to cause the most serious

consequence. Conversely, OBA will only suppress one in-

stance of the brake message (in ≈ 0.5s), and will not be able

to follow this instance with persistent suppression. As such,

OBA will result in an ineffective DoS attack allowing almost

normal functionality of the brakes.

Limitation. STS causes packet collisions on the CAN bus.

Hence, an IDS that monitors the number of collisions on the

bus may suspect the presence of an attack. However, this does

not affect the progress of the attack because of two reasons.

(1) The first three stages of STS (i.e., the network mapping,

victim identification, and recovery behavior determination)

do not have to happen right before the final stage (i.e., the

recovery prevention). They could take place in a “low and

slow” manner over a period of time in order not to trigger the

IDS. (2) Even if the attack gets detected, the attack cannot be

stopped as it exploits inherent aspects of the CAN standard.

8 Responsible Disclosure

We reported the three discovered vulnerabilities to the Robert

Bosch Product Security Incident Response Team (PSIRT).

PSIRT acknowledged our work and offered to share details of

the vulnerabilities with other automotive industry stakehold-

ers. We also reported the vulnerabilities to the International

Organization for Standardization (ISO). ISO referred us to

the American National Standards Institute (ANSI), which di-

rected us to the Society of Automotive Engineers (SAE). SAE

acknowledged our contributions and submitted the vulnerabil-

ities to a committee for review and consideration in the next

revision. Finally, we reported the vulnerabilities to the Cyber-

security and Infrastructure Security Agency (CISA) through

the CISA Coordinated Vulnerability Disclosure (CVD) pro-

cess. CISA created a case for our report and asked us to report

the vulnerabilities to Bosch and ISO, which we have done.

9 Defense Recommendations

With the vulnerabilities uncovered by CANOX being inher-

ent to the CAN protocol, the fundamental defense causing no

side effects is to revise the standard. However, noting that this

may not be feasible, certain countermeasures may still be used

in accordance with the current standard. Below, we present

some possible mitigations and their potential downsides.

Passive Error Regeneration. Unfortunately, the only solu-

tion to stop an attack exploiting this vulnerability once it

starts is to reset the ECU’s CAN controller. Previous works

have suggested this solution [7,24,25] to prevent DoS attacks.

However, if the increase was happening due to legitimate

errors, bringing a faulty CAN controller back to the error

active state defeats the purpose of the fault confinement mech-

anism [10,11], and may result in many performance issues. A

possible solution is to reset only when an attack is suspected.

This could be achieved by counting the number of errors in

the passive error frames within a window. If the number ex-

ceeds a specific threshold, it could signify that the errors are

due to an enforced passive error regeneration.

Deterministic Recovery Behavior. This vulnerability could

be mitigated by clearing all transmission buffers upon entering

the bus off state, or before re-entering the error active state.

Error State Outspokenness. CAN designers placed a sus-

pend transmission period on successive transmissions and

retransmissions in passive nodes to lower their priority. How-

ever, such a change could easily be spotted by an attacker. One

countermeasure is to reset the CAN controller once it enters

the error passive state. However, this may lead to performance

issues. A better solution is for all ECUs to randomize the pe-

riod between successive transmissions/retransmissions. For

successive transmissions, this could be achieved by buffering

the second message without marking it as ready for transmis-

sion until the random period elapses. For retransmissions, this

could be achieved by disabling automatic retransmissions on

the CAN controller and delegating this task to the application

software. This helps conceal the suspend transmission period

for passive nodes. However, it may also cause an increased

overhead or priority inversions on the bus in some cases.



10 Related Work

Vulnerabilities of CAN. Prior research has demonstrated that

after infiltrating CAN through a wired/wireless medium (e.g.,

USB, cellular, Bluetooth, and WiFi connections), an attacker

can compromise an in-vehicle ECU node (e.g., telematics

control unit) and execute arbitrary software codes on it [3,

17, 19, 20]. Since CAN is devoid of any security features, the

attacker can exploit the compromised node to launch a variety

of attacks on other safety-critical nodes, which cannot be

directly compromised [15]. Hence, it is imperative to develop

frameworks that can methodically discover the full spectrum

of vulnerabilities suffered by CAN under such scenarios [22].

To the best of our knowledge, CANOX is the first effort in

systematically analyzing the error handling mechanism and

discovering its security vulnerabilities.

ECU DoS Attack. Cho and Shin were the first to propose

a DoS attack, referred to as OBA [4]. However, as shown

in this paper, OBA is incomparably slow in suppressing the

victim and ineffective in stopping the victim’s transmission

persistently. As a consequence, it is unlikely to have a practi-

cal impact. Some other DoS attacks exploiting similar ideas

as OBA required special hardware modules to launch the

attack [12, 18, 21]. Hence, they required physical access to

CAN, which makes them unscalable. Additionally, all the

aforementioned solutions assumed the attacker already knows

the ECU functions and the messages they transmit. In con-

trast, STS employs the discovered vulnerabilities to acquire

this knowledge, then to rapidly and persistently suppress the

victim using the existing abilities of a compromised ECU.

Network Mapping. Some prior works proposed using clock

skews of ECUs to perform sender identification [5, 16]. How-

ever, their learning techniques were prone to inaccuracies and

proved to be evadable [23]. Others suggested using voltage

signatures of ECUs [6,13] and hence required physical access.

It is essential to note that all these solutions approached the

issue from a defense standpoint. On the other hand, the sever-

ity of our technique lies in its ability to be used by a remote

attacker. This is because it uses the existing ECU abilities to

achieve the same task with higher accuracy. Additionally, we

are the first to map aperiodic with existing ECU abilities.

11 Conclusion

In this paper, we systemically analyzed CAN’s error handling

and fault confinement mechanism, focusing on operating in

different error states, an understudied area in the CAN pro-

tocol. We built CANOX, a novel CAN testing tool to detect

problematic behavioral changes across error states. CANOX

uncovers three new vulnerabilities, which can be exploited

by a compromised ECU to launch a multitude of attacks.

We demonstrated the severity of the vulnerabilities by con-

structing a powerful attack, STS, in which an attacker with

no knowledge of the vehicle’s internals could map its internal

network, identify ECU functions, shut down an ECU, and

prevent it from recovering. We proved the attack’s feasibility

by evaluating it on both a CAN testbed and a real vehicle.
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A Deliberate Packet Collisions

For an attacker to target and induce a collision with a victim’s

message, the attacker needs to simultaneously transmit a mes-

sage with the same ID as the victim’s message, but with a

different payload. Hence, the attacker first needs to estimate

the arrival time of the victim’s message, and then attempt to

transmit exactly at the expected arrival time. For a periodic

message, this could be done by monitoring the message ID

and calculating its period. However, messages on the bus en-

counter small jitter in transmission time, which may cause

the attacker’s message to arrive slightly earlier or later than

the victim’s message. To address this challenge, in [4], the

authors propose employing a preceded ID message, that has

a higher-priority ID than the victim’s message and is trans-

mitted (by the attacker) immediately before the transmission

of the victim’s messages. As shown in Fig. 12, this enforces

both the victim and the attacker to start transmitting exactly

at the conclusion of the preceded ID message, synchronizing

the victim’s and the attacker’s messages.

Victim

Attacker

CAN Bus

ID A

ID A

ID A ID A

ID A

ID A
Preceded 

ID

ID A
Preceded 

ID

Victim’s Message 
Arrives Slightly After 

Attacker’s Message

0 0 0 0 0 0 0 0 01 1 1 1 1 1 1

0 0 0 0 0 0 0 0 01 1 1 1 1 1 1

0 0 0 0 0 0 0 0 11 1 1 1 1 1 1

DLC
ID

Bit-Error

Victim’s Message 
Arrives Slightly After 

Attacker’s Message

Figure 12: Enabling time synchronization between the at-

tacker’s and the victim’s messages by using a preceded ID

message to facilitate packet collisions on the CAN bus.

B Recovery Estimation and Prevention

B.1 Determining Victim’s Recovery Model

The attacker can identify the victim’s time recovery model by

launching SFBO against the victim and observing the inter-

val between the time it enters the bus off state and the time it

recovers back to the error active state. To identify whether the

recovery model is fixed, sequenced, or random, the attacker

needs to launch another SFBO, wait until the victim attempts

to recover, suppress its first recovery attempt, then let it re-

cover again. It then measures the time spent by the victim

in its second recovery attempt and uses it for comparison to

determine the time recovery model as described in Fig. 13.

Bare Minimum. If the time corresponds to 128 instances of

11 recessive bits, the model will be the bare minimum.

Fixed Interval. If the recovery time is constant in all in-

stances, the model is determined to be the fixed interval. The

attacker learns this interval by observing the time after attack-

ing the victim once and letting it recover.

Sequenced Intervals. In a sequenced intervals model, the

victim uses a different interval every time the recovery is
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Figure 13: Determining victim’s time recovery model
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Figure 14: Ramping up suppression rate by learning more

recovery sequences every iteration

suppressed. However, the sequence of intervals is fixed. Here,

the attacker can learn the sequence as it launches the attack.

The attacker first uses SFBO against a victim message, then

measures the first recovery interval in the sequence by letting

the victim recover. Next, the attacker attacks the victim again

and, using the learned interval, suppresses the first recovery,

then learns the second interval in the sequence by letting the

victim recover, and so on.

Random. If there is no observable pattern in the victim’s

recovery time, the attacker considers the model to be random.

B.2 Recovery Prevention

Since there exist multiple time recovery models, the recovery

estimation method differs between models. We now explain

how to estimate recovery time for each model.

Bare Minimum. Recovery is estimated by observing 11 re-

cessive bit instances since the last SFBO, then re-launching

another SFBO instance by the 128th instance.

Fixed Interval. Recovery is prevented by measuring the time

since the last SFBO instance and relaunching new instances

after the determined fixed interval.

Sequenced Intervals. The attacker prevents the recovery us-

ing the determined sequence of intervals, leading to a ramp-up

attack that lasts longer at every recovery as shown in Fig. 14.

Random. There is no way to expect when the ECU with
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Figure 15: Suppressing victims with random recovery times

by attacking trailing recovery messages.

this model recovers. Hence, the attacker cannot suppress the

victim’s recovery by attacking the first recovery message.

Instead, we use the first message to signal the ECU’s recovery

and attack the first trailing message for recovery prevention

as shown in Fig. 15. When a node recovers, it sends recovery

messages, including the attacked message, and other trailing

messages. By identifying the optimum message ID when

identifying the victim’s recovery behavior, the first trailing

message will have the same ID as the attacked message. This

facilitates the attacker’s job, as it does not require guessing

and changing the ID used in SFBO to match the trailing

message at every recovery prevention instance.

Attacking trailing messages entails that the victim will be

successful at transmitting the first recovery message at every

recovery attempt. However, if the attacker chooses the ID with

the shortest period to attack the ECU, the recovery time for the

ECU will usually be much longer than the attacked messages

period ≈ 10X . This incurs a severe delay and transmission

frequency reduction for the message ID under attack. We note

that the data content of the attacked message will be stale

because of the delay. Also, since an ECU usually transmits

multiple message IDs, the attack will successfully block all

of the non-attacked message IDs transmitted by the ECU.

C Evaluation of STS

C.1 Victim Function Identification

On our 2011 ExpCar, using an OBD-II scanner, we identified

four CAN IDS: 0x7E0, 0x7E2, 0x243, and 0x241, to which

the Engine Control Module (ECM), Transmission Control

Module (TCM), Electronic Brake Control Module (EBCM),

and Body Control Module (BCM) responded, respectively.

These ECUs responded at IDs: 0x7E8, 0x7EA, 0x543, and

0x541, respectively. The response time for each request was

recorded and used to push the responder to the error passive

state. Next, using the network map acquired in the network

mapping stage, each of the responses was mapped to one of

the transmitting ECUs as shown in Table 1.

C.2 Learning Victim’s Recovery Behavior

On the testbed, two ECUs were set up to implement a fixed

penalty interval recovery model with a 35ms interval. Two

other nodes were set up to implement the bare minimum

model. Using SFBO, we were able to suppress all nodes, one



at a time, by attacking a single message as shown in Fig. 6.

At recovery, all nodes transmitted the attacked message as

their first recovery message. However, only nodes that imple-

mented the fixed interval time recovery model sent trailing

messages. ECUs implementing the bare minimum model only

sent the attacked message. This is because, at the testbed’s bus-

load of≈ 15%, the average recovery interval of the bare mini-

mum nodes was≈ 4ms, a period too short for another message

to be buffered, since the period for the fastest-transmitting ID

for all ECUs was 10ms.

For both of the ECUs implementing the fixed interval

model, we tried attacking the IDs with the shortest period,

and the IDs with the second shortest period. In both cases,

and in both ECUs, the trailing messages had the ID with the

shortest period in the ECU. However, in both cases, the first

recovery message was the same message that was attacked.

On the vehicle, we evaluated SFBO on the four mapped

ECUs. To ensure the ECUs truly transitioned to the bus off

state, we recorded the traffic after every attack and observed

the lack of any IDs that belong to the mapped ECU. This also

validated our mapping results. On all ECUs, the first recovery

message was the attacked message. Additionally, all ECU re-

coveries included trailing messages. The time recovery model

for EBCM and BCM was identified as sequenced intervals.

For the TCM and ECM, it was identified as random.

One challenge was identifying the Optimum ID. Looking

at Table 4, we notice that EBCM (ECU-1), has three IDs

with the shortest period being 9ms, TCM (ECU-3) has two

IDs with a 12.5ms period, and ECM (ECU-4) has two IDs

with a 12.5ms period. To pick the optimum ID for EBCM,

we attacked it at IDs: 0x0C1,0x0C5 and 0x1E5. In all cases,

the trailing messages were of ID 0x0C1. Hence, 0x0C1 was

selected as the optimum message for BCM. Similarly, 0x0F9

and 0x0C9 were selected for TCM and ECM, respectively.

C.3 Recovery Prevention

On the testbed, ECU-1 and ECU-4 had a bare minimum re-

covery model. Hence, their recovery estimation and preven-

tion was done by observing the number of 11 recessive-bit-

instances and relaunching SFBO around the 128th instance.

On the other hand, ECU-2 and ECU-3 had a fixed interval

model, with an identified recovery interval of 50ms. There-

fore, their recovery were estimated by starting a timer, and

relaunching SFBO exactly when 50ms elapsed as described

in Sec. 5.4. We were able to achieve an Srate of 100% for at

least 10s on all ECUs. After running the attack for 30 minutes,

the average Srate remained above 99.99%.

On the vehicle, EBCM and BCM have a sequenced recov-

ery model. We used the ramp up attack shown in Fig. 14, to

identify their sequences and prevent their recovery. As shown

in Table 2, we identified 21 sequences for EBCM, and 13 for

BCM, achieving maximum suppression periods of 2.38s and

1.42s, and average Srate of 97.5% and 91.4%, respectively.

For the ECM and the TCM, their recovery model was iden-

ECU 1

C5 9

C1 9

1E5 9

1C7 18

1CD 18

1E9 18

184 18

334 18

2F9 48

348 48

34A 48

17D 99

17F 99

773 1000

500 1000

ECU 2

F1 10

1E1 30

1F3 33

1F1 100

134 100

12A 100

3C9 100

3F1 233

4E1 1000

771 1000

4E9 1000

138 1000

514 1000

52A 1000

120 5000

ECU 3

199 12.5

F9 12.5

19D 25

1F5 25

4C9 500

77F 1000

ECU 4

C9 12.5

191 12.5

1C3 25

1A1 25

2C3 50

3C1 100

3E9 100

3D1 100

3FB 250

3F9 250

4D1 500

4C1 500

4F1 1000

772 1000

ECU 1 1.5 

ECU 2 4.6

ECU 3 4.1

ECU 4 3.3

ECU ID
Period 

(ms)
ECU ID

Period 

(ms)

ECU Period (ms)

Overall Average 

Transmission 

Interval for ECU

ECU ID
Period 

(ms)

Table 4: Network map of a 2011 ExpCar1.

tified as random. Hence, we attacked the trailing message as

described in Fig. 15, with IDs 0x0C9, and 0c0F9 selected as

the optimum IDs for the ECM and the TCM, respectively. By

attacking the trailing message, we were able to achieve maxi-

mum suppression periods of 3.51s and 1.38s, and average Srate

of 85%, and 83% for the TCM and the ECM, respectively.

As mentioned earlier, when attacking an ECU’s optimum

ID, the first trailing message will usually have the same ID.

However, ECUs that have multiple IDs with similar, short

periods will sometimes send other IDs in rare instances. This

is the case with IDs: 0x0C9 and 0x191, and 0x0F9 and 0x199,

in the ECM and TCM, respectively. When this happens, re-

covery prevention that relies on attacking the trailing message

will fail, and the attacker will have to synchronize, re-launch

SFBO, and proceed to prevent victim recovery again. This

explains the slightly lower Srate for ECM and TCM when

compared to EBCM and BCM.
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