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improperly allowed them to activate the anti-stall system [17].

Unfortunately, previous fuzzing approaches cannot discover
this type of violations for the following two reasons. First,
they do not consider the entire input space of the RV’s control
software, including user commands, configuration parameters, and
environmental factors. Second, they only focus on finding memory
corruption bugs or RV’s control stability issues. Therefore, they
cannot detect safety policy violations, e.g., a drone is deploying
the parachute at a too-low altitude.

We develop PGFUZZ, a policy-based fuzzing framework
designed to address these challenges. PGFUZZ includes three
interconnected components: (1) Pre-Processing, (2) Policy-Guided
Fuzzing, and (3) Bug Post-Processing.

In the Pre-Processing component, we express the correct
operation of an RV through policies denoted by a metric temporal
logic (MTL). Thereafter, we minimize the fuzzing space via
finding inputs related to the tested policies that, when mutated,
could potentially trigger policy violations. For example, given
a policy in natural language stating that “the fail-safe mode
must be triggered when the engine temperature is higher than
100°C”, PGFUZZ expresses this policy with the MTL formula:
� {(temperature>100°C) → (failsafe=on)}. It then
decomposes this formula into the temperature and the fail-safe
mode states, and identifies fuzzing inputs such as user commands
(e.g., increasing temperature) and configuration parameters
(e.g., units of temperature), influencing the policy states.

Then, the Policy-Guided Fuzzing mutates inputs identified
by the Pre-Processing component. It implements two kinds of
distance metrics, propositional distances to guide the mutation
engine, and a global distance to detect when a policy violation
occurs. The distance metrics quantify how close the current system
states are to a policy violation. Positive distances indicate the policy
holds, whereas negative distances indicate the policy is violated.
Therefore, PGFUZZ mutates inputs to minimize the global distance.
After each input is sent to the control software, which runs in an
RV simulator, PGFUZZ collects the system states and computes the
distance metrics. The input’s impact on the distance metric (whether
it increases or decreases) is leveraged to decide on the next inputs.
When the global distance becomes negative, a policy violation is
detected. Turning to the fail-safe mode example, PGFUZZ mutates
inputs to increase the temperature to be larger than 100°C, and
checks whether, at the same time, the fail-safe mode is activated.

The last component, Bug Post-Processing, minimizes the input
sequence triggering the bugs by excluding inputs irrelevant to the
policy violation. The minimized input sequence is then used to
identify the root cause of each violated policy.

To verify the correctness and effectiveness of PGFUZZ, we

Abstract—Robotic vehicles (RVs) are becoming essential tools 
of modern systems, including autonomous delivery services, public 
transportation, and environment monitoring. Despite their diverse 
deployment, safety and security issues with RVs limit their wide adop-
tion. Most attempts to date in RV security aim to propose defenses 
that harden their control program against syntactic bugs, input val-
idation bugs, and external sensor spoofing attacks. In this paper, we 
introduce PGFUZZ, a policy-guided fuzzing framework, which vali-
dates whether an RV adheres to identified safety and functional poli-
cies that cover user commands, configuration parameters, and physi-
cal states. PGFUZZ expresses desired policies through temporal logic 
formulas with time constraints as a guide to fuzz the analyzed system. 
Specifically, it generates fuzzing inputs that minimize a distance met-
ric measuring “how close” the RV current state is to a policy violation. 
In addition, it uses static and dynamic analysis to focus the fuzzing ef-
fort only on those commands, parameters, and environmental factors 
that influence the “truth value” of any of the exercised policies. The 
combination of these two techniques allows PGFUZZ to increase the 
efficiency of the fuzzing process significantly. We validate PGFUZZ on 
three RV control programs, ArduPilot, PX4, and Paparazzi, with 56 
unique policies. PGFUZZ discovered 156 previously unknown bugs, 
106 of which have been acknowledged by their developers.

I. INTRODUCTION

Robotic Vehicles (RVs) are becoming widespread both in 
industrial and consumer environments [7], [35], [60]. Unfortunately, 
RVs face diverse threats including (1) physical external attacks such 
as sensor spoofing attacks [61], [65], (2) software crashes due to 
floating-point exceptions or memory corruption issues, (3) insider at-
tacks [4], [34], and (4) misimplementations causing safety and func-
tional issues, which leads to undesired behaviors in the RV. Previous 
efforts at fuzzing have introduced techniques to address (1), (2), and 
(3), but (4) has not received much attention. RVs must respect safety 
and security policies to avoid creating physical damage to the envi-
ronment in which they operate or to themselves. For instance, RVs 
are often equipped with a parachute. Due to safety concerns, RV’s 
software must check preconditions to safely release the parachute 
(e.g., the RV must be high enough when deploying the parachute). 
However, the control software’s careless design may allow the RV 
to release the parachute without checking these preconditions.

Such safety violations might lead to catastrophic consequences 
as reported in recent news [17], [63]. For instance, Tesla’s autopilot 
software failed to initiate an emergency brake maneuver [63], and 
the Boeing-737 Max airplanes crashed because their software
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Fig. 1: Workflow of RV’s control software.

used PGFUZZ to fuzz ArduPilot, PX4, and Paparazzi, the three
most popular flight control software packages used in many
commodity RVs [10], [32], [52]. PGFUZZ found 156 previously
unknown bugs in 48 hours1. Out of the 156 bugs, the developers
confirmed 106 bugs, and nine bugs have already been patched. We
compared PGFUZZ’s results with those from previous approaches
designed to find bugs in RVs. We found that 128 out of 156 found
bugs can only be discovered by PGFUZZ.

In summary, this paper makes the following contributions:

• Behavior-aware Bug Oracle. We identify policies that
define RVs’ safety and functional requirements and
formally represent them via temporal logic formulas.
PGFUZZ leverages the identified policies to find bugs
allowing the violation of these policies.

• Policy-Guided Mutation Engine. PGFUZZ follows a
novel fuzzing design that optimizes its bug search by (i)
mutating the inputs/parameters, trying to negate the iden-
tified security policies and using, as a heuristic, dedicated
distance metrics, and (ii) minimizing the fuzzing space of
the inputs and parameters related to the analyzed policies.

• Evaluation in real-world RVs. We applied PGFUZZ to
the three most popular vehicle control software packages,
and we discovered 156 previously unknown bugs, 106
of which have been acknowledged by developers of the
affected packages.

To foster research on this topic, we make PGFUZZ publicly
available (https://github.com/purseclab/PGFUZZ).

II. BACKGROUND

Inputs and Outputs of RVs. A vehicle leads to incorrect operation
or failure when the system maintains an undesired state. For
instance, a vehicle crashes to the ground when it maintains incorrect
roll, pitch, and yaw angles. RVs often periodically follow three
steps (See Figure 1) for their correct operation: (1) the control
algorithm reads system outputs y(t) measured by the sensors (from
1 to 2 ), (2) the algorithm first computes errors e(t) based on
r(t)−y(t) where r(t) and t denote reference states and current
time, and (3) a Proportional–Integral–Derivative (PID) control
algorithm derives system inputs u(t) through e(t) ( 3 ).

1We made responsible disclosure to the developers of the flight control software.

RVs mainly operate with three types of inputs, configuration
parameters (InputP), user commands (InputC), and environment
factors (InputE). (1) InputP allows users to configure many
aspects of how RVs operate. For instance, KP, Ki, and Kd of
the PID control algorithm denote tuning parameters for the
proportional, integral, and derivative terms. RVs specify ranges for
configuration parameters of KP, Ki, and Kd to safely tune the PID
control algorithm. (2) InputC enables the users to dynamically
operate RVs. The control software denies some of Inputc when
these commands lead to an undesired system state. For example,
disarming user command stops the vehicle’s all motors, and the
control software does not accept such a command while the vehicle
is flying in the air. (3) InputE (e.g., wind and sensor noise) also
affects the system outputs y(t). For instance, the control software
assigns a barometer sensor as a primary altitude source when GPS
signals are blocked or show biased altitude values.

Fuzzing. Fuzzing is an automated testing technique that randomly
or semi-randomly generates test inputs to discover bugs in programs.
Existing fuzzing approaches differ in how they handle two main
core aspects: input generation and bug oracle. The input generation
can be completely random or guided by some heuristics. For
instance, many approaches [5], [44], [48] use code coverage as a
heuristic. Regarding the bug oracle, traditional fuzzing approaches
use code crashes (typically caused by memory corruption) to detect
inputs triggering bugs in the analyzed program. We consider these
two aspects differently than in traditional, general-purpose fuzzers.
Specifically, about the bug oracle, since we are dealing with RVs,
we mainly aim at finding policy violations about the physical states
of RVs, in addition to software crashes in the control software. We
then run the control software in a simulator that is able to keep track
of the physical states of the tested control software. Lastly, we define
a metric measuring how “close” we are to violating one of these poli-
cies. We use this metric as a heuristic to guide our input generation.

III. MOTIVATING EXAMPLE

We provide an example of a safety issue that PGFUZZ targets.
ArduPilot drone control software can trigger a parachute release
when it recognizes that the drone is falling to the ground with an
uncontrolled attitude [10], [15]. Additionally, the user can manually
trigger parachute deployment. In both cases, the ArduPilot official
documentation states that the following four conditions must hold
to deploy a parachute while preserving the drone safety [13]:
(1) the motors must be armed, (2) the vehicle must not be in the
FLIP or ACRO flight modes, (3) the barometer must show that the
vehicle is not climbing, and (4) the vehicle’s current altitude must
be above the CHUTE_ALT_MIN parameter value.

Based on these requirements, we express a safety policy
(A.CHUTE1) through metric temporal logic (MTL) (Detailed in Sec-
tion V-A): �{(Parachute=on)}→{(Armed=true)∧(Modet 6=
FLIP/ACRO) ∧ (ALTt ≤ ALTt−1) ∧ (ALTt>CHUTE_ALT_MIN)}
where t and ALT denote time and altitude, and � is always.

Traditional fuzzing techniques targeting program crashes [5],
[44], [48] clearly cannot detect such safety violations. Moreover,
randomly sending commands to the ArduPilot drone simulator
cannot efficiently test this policy, given the high number of
commands and parameters that could be potentially mutated.

Additionally, fuzzing approaches that specifically target
CPS [21], [22], [41] cannot discover this kind of safety violations
for two main reasons. First, policy violations are often triggered
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by the composition of different types of system inputs. However,
these approaches only focus on a single part of the input space,
meaning they do not consider unified behavior of user commands,
configuration parameters, and environmental factors. Second,
their bug oracles are designed to detect specific bug types,
such as deviated flight paths or instability. To detail, if a policy
violation causes unexpected physical behavior, e.g., failing to
trigger a GPS fail-safe mode, their bug oracles cannot detect such
undesired behavior although the failing GPS fail-safe mode leads
to unexpected states with potentially disastrous consequences.

To address these limitations, PGFUZZ uses MTL formulas to
guide both its input generation and detect safety violations. Turning
to the example safety policy, PGFUZZ issues system inputs that
trigger a mutation of the propositional variables of the formula. At
the same time, it checks whether the safety policy is violated after
each input generation. By using PGFUZZ, we found that ArduPilot
improperly checks the first three requirements. This leads to a policy
violation where the vehicle deploys the parachute when it is climb-
ing, causing it to crash on the ground (Detailed in Section VII-C1).
Threat Model. We consider as in-scope for this paper both design
flaws (from benign developers and users) and malicious intent (from
adversaries) that can cause unsafe or undesired states (e.g., physical
crashes) in RVs. Design flaws can happen due to poor parameter
documentation, unexpected environmental conditions (e.g., sensor
noise and wind), and buggy code. We assume that developers are
benign; they, however, could misimplement or incorrectly design
the system components. Furthermore, users can unintentionally
cause safety issues via either sending commands at an inappropriate
time or improperly changing configuration parameters.

While considering malicious actors, we assume that an
adversary is aware of inputs causing policy violations and can
trigger them with malicious intent. Particularly, an adversary
can control an RV’s three types of inputs. (1) An adversary can
manipulate the configuration parameters of an RV by either
overriding them before a flight or changing them after the drone
takes off (similar to [41]). (2) An adversary can replay or spoof
user commands sent to the RV by exploiting known vulnerabilities
in the RV’s communication protocol [43], [58]. (3) An adversary
can manipulate the environmental conditions (or wait until suitable
conditions are met) before conducting their attack (similar to [23],
[41]). We detail the number of violations for each subset of
these inputs in Section VII-B. For instance, we will show that an
adversary is able to trigger 77% of the found policy violations by
only changing the RV’s configuration parameters.

The adversary’s goal is to physically impact the RV’s operations
(e.g., causing a physical crash or disrupting the RV’s camera) by
stealthily triggering policy violations. We note that an adversary
could also simply drop or disarm the vehicle by sending a malicious
command (e.g., stopping actuators); however, these attacks are
not stealthy. Particularly, such self-sabotaging inputs can be easily
identified and prevented with run-time mission monitoring tools
enforced by both the vehicle and ground control system [25],
[46]. In contrast, policy violations triggered by sending an input
that looks innocent are stealthier and more difficult to detect by
monitoring tools. For these reasons, we do not consider these
self-sabotaging attacks in-scope of this paper. In addition, physical
sensor attacks (e.g., GPS and gyroscope spoofing) and malicious
code injections are out of scope. The main reasons are (1) the
root causes of sensor attacks arise in the hardware components
(e.g., acoustic attacks against gyroscope [61]), rather than buggy

code in the vehicle’s control program, and (2) there exist effective
techniques to detect sensor and code injection attacks [6], [28],
[37]–[39]. Lastly, although PGFUZZ is not designed to specifically
find floating-point exceptions and other software crashes in the
controller code, it reports them when triggered by the tested inputs.

IV. APPROACH OVERVIEW

In this section, we first present the design challenges of CPS
fuzzing. We then provide an overview of PGFUZZ.

A. Design Challenges

Traditional fuzzing techniques [5], [44], [48] including those
for CPS [21], [22], [41] have two main limitations that prevent their
adoption for policy-guided fuzzing in real-world systems. First, their
bug oracles are not designed to detect undesired system states that
do not cause a system crash, memory-access violation, or physical
instability. To address this limitation, we implement a Behavior-
aware Bug Oracle. Our bug oracle is aware of desired states of RVs
via MTL formulas and detects if the formulas are violated while
fuzzing the analyzed program. Second, the mutation engines of the
traditional fuzzers cannot intelligently generate inputs for the RVs.
This limitation is due to the large input space of the RVs, with tens
of different parameters and commands, each of which can have
a wide range of values. To address this limitation, we implement
a Policy-Guided Mutation Engine. This engine is based on:

1) A mapping connecting each term of a policy with the
inputs influencing the RV’s states;

2) A distance metric measuring the “distance” between a
vehicle’s current states and policy violation.

The mutation engine uses these to guide the input mutations
toward those more likely to generate a policy violation.

B. PGFUZZ Overview

PGFUZZ includes three interconnected components, (1)
Pre-Processing, (2) Policy-Guided Fuzzing, and (3) Bug
Post-Processing, as depicted in Figure 2.
Pre-Processing. In this step, we identify and formally represent
the policies and reduce the large input space by eliminating the
inputs that are not relevant to the identified policies.

Users and developers derive requirements in the targeted system
by studying the RV documentation and evaluating the connections
between assets and functional constraints that restrict the use
or operation of assets [19], [20]. We then convert the identified
requirements from natural language to policies expressed with
MTL formulas ( 2 ). PGFUZZ next runs its profiling engine, which
determines for each policy the limited set of inputs, Inputmin,
relevant to the target policy (i.e., the limited set of inputs that, when
mutated, could potentially trigger policy violations). To achieve
this, we first unwind the relationship between the configuration
parameters (InputP) and the RV physical states by (1) obtaining the
data-flow graph of the vehicle through static analysis (if the RV’s
source code is available) and (2) analyzing the developer guide
manuals [12], [53] ( 3 ). However, using the static analysis and
manuals makes it difficult to analyze the impacts of user commands
(InputC) and environmental factors (InputE) on the states since
(1) InputC and InputE indirectly impact many physical states
through dependencies (e.g., wind affects almost all physical states)
that cannot be captured in the source code via the static analysis,
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and (2) the manuals usually do not mention the impacts of InputC
and InputE on the RV’s states. Therefore, we conduct a dynamic
analysis with an RV simulator for InputC and InputE to extract the
relationships between these inputs and the RV physical states ( 4 ).
This process also enables PGFUZZ to estimate the time required
for each input in the Inputset to cause a physical effect on the RV.
This information is later leveraged by PGFUZZ’s mutation engine.

Policy-Guided Fuzzing. This step mutates inputs based on the
computed distance metrics and uses them to fuzz the analyzed
program to find policy violations. The mutation engine first selects
one input among those returned by the profiling engine of the
Pre-Processing component, Inputmin ( 4 - 5 ). These test inputs are
sent to the simulator that runs the system and reports the physical
states (e.g., sensors and actuator values) of the RV ( 6 - 7 ). During
this step, we eliminate the environmental noise (e.g., vibration and
wind effect) by measuring the deviation between the reference and
current system states ( 7 ). We then compute two separate “distance
metrics” that formally define how close a system is to a policy
violation ( 8 ): (i) a global distance that checks whether the current
system states violate a policy, and (ii) a propositional distance
that intelligently mutates the inputs to lead the system closer to
violations. Lastly, the mutation engine determines the particular
inputs to minimize the distance. If none of the inputs decrease the
distance metric, new inputs from Inputmin are selected from the
input-policy maps ( 5 ). The inputs that lead to policy violations are
reported to PGFUZZ’s Bug Post-Processing component ( 9 10 ).

Bug Post-Processing. This step minimizes the sequence of inputs
triggering the detected policy violation by excluding inputs
irrelevant to the policy violation. This information is for identifying
the root cause of the violated policy.

V. PGFUZZ: POLICY-GUIDED FUZZING

In this section, we detail the components of PGFUZZ, Pre-
Processing (Section V-A), Policy-Guided Fuzzing (Section V-B),
and Bug Post-Processing (Section V-C).

A. Pre-Processing

The Pre-Processing component aims at (1) deriving MTL
formulas to express policies, and (2) building a profiling engine
to narrow the fuzzing space based on MTL formulas. This allows
us to obtain the minimal fuzzing space (Inputmin) required for the
Policy-Guided Fuzzing component (Section V-B).

1) Extracting MTL Policies: We refer to policies as the
requirements that a system must satisfy for a vehicle to be
considered safe. We identify the policies for RVs through
requirements engineering [20] and represent the policies with
formal logic that enables formal reasoning about them. The policies
are expressed with Metric Temporal Logic (MTL) [1], [42]. In
contrast to Linear Temporal Logic (LTL) [50] and Computation
Tree Logic (CTL) [26] that enable reasoning over occurrence
and event ordering, MTL extends LTL’s modalities with timing
constraints, which is more amenable to represent semantically rich
temporal and causal relations among system states of RVs.

MTL formulas are composed of a set of atomic propositions
(AP), propositional logic operators and temporal operators [42].
First, p ∈ AP is a logical statement consisting of “terms”. A
term can be a physical state of RVs, configuration parameter,
or environmental factor. Turning back to the A.CHUTE1 policy
example in Section III, (ALTt>CHUTE_ALT_MIN) is an AP, and the
ALTt and CHUTE_ALT_MIN are terms. Second, MTL supports the
propositional logic operators such as conjunction (∧), disjunction
(∨), and negation (¬). Third, the temporal operators include next
(©I), always (�I), eventually (♦I), and until (UI) where I denotes
any non-empty positive interval. Formally, MTL formulas can
be defined as follows: ϕ ::=> | p | ¬ϕ | ϕ1∨ϕ2 | ϕ1UIϕ2 | ©Iϕ,
where p∈AP and>=true.

We manually identify the policies through requirements defined
in documentation and comments in the source code of popular RVs,
ArduPilot, PX4, and Paparazzi. The policies are extracted in natural
language and then expressed with MTL formulas. To make the pol-
icy identification process easier, PGFUZZ provides users with MTL
templates to express policies as shown in Table I, similar to previous
works [29], [66]. For instance, PX4’s documentation that states “If
time exceeds COM_POS_FS_DELAY seconds after GPS loss is de-
tected, the GPS fail-safe must be triggered” is expressed with MTL
as � {(GPSloss = on) → (♦[0,COM_POS_FS_DELAY+k]GPSfail = on)}
(the time constraint k is detailed in Section VII-C4).

Through this process, we identified 56 policies for our target
RVs, 30 for ArduPilot, 21 for PX4, and 5 for Paparazzi (See
Table XII in Appendix E). We measured the time required by a
knowledgeable user to identify the policies and express them as
MTL formulas. Particularly, two authors spent a total of 7.5 hours
identifying ArduPilot policies, 3.5 hours for PX4, and 2.4 hours
for Paparazzi. The time includes studying the target RV’s official
documentation/source code, writing policies in natural language,
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ID Policy Template Description MTL Notation
T1 termj should be true within time k after termi is satisfied. termi→♦[0,k]termj
T2 If termi is true, termj, ... , termn are also true and termk, ... , termm are false. termi→ [�(termj∧...∧termn)]∧[¬(termk∧...∧termm)]
T3 If termi, ... , termn are true, termj is also true. �(termi∧...∧termn→termj)

TABLE I: Policy templates that we use to express policies as MTL formulas for fuzzing.

translating them from natural language to MTL, and detecting the
policy conflicts and reconciling them.

2) Profiling Engine: RVs have a large input space. For
instance, ArduPilot v.4.0.3 supports 1,140 configuration parameters
(InputP), 58 user commands (InputC), and 168 environment
factors (InputE). The profiling engine aims to exclude inputs
unrelated to the fuzzed policies to reduce this large input space.

Figure 3 shows the six steps of the profiling engine. In the first
step ( 1 ), we map each policy into a list of terms, where each term
represents a physical state of the RV, configuration parameter, or en-
vironmental factor. For example, A.CHUTE1 policy2 is decomposed
into five terms: (1) parachute, armed, mode, and altitude are phys-
ical states of the RV and (2) CHUTE_ALT_MIN is a configuration
parameter. We refer to this mapping as policy-term ( 1a ).

Second, we map InputP to terms through static analysis to
identify which policy terms related to InputP ( 2 ). We refer to
this mapping as parameter-term ( 2a ). To illustrate, ABS_PRESS
configuration parameter is an offset value for computing barometric
altitude. PGFUZZ includes the ABS_PRESS parameter into its
fuzzing input space to test A.CHUTE1 policy because this parameter
value is used to compute the altitude state.

Third, we derive dependencies among InputP, InputC,
InputE via dependency analysis to infer relationships among these
inputs ( 3 ). For instance, a user desiring to deploy a parachute
via Parachute command needs to change CHUTE_ENABLED
configuration parameter ( 3a ). Therefore, a dependency between
Parachute user command and configuration parameter
CHUTE_ENABLED is identified.

Fourth, we perform dynamic analysis with RV simulators
to exclude the read-only and unsupported InputP from the
constructed parameter-term map ( 2a ). This step is crucial to reduce
the parameter-term map size. We then map InputC and InputE
into policy terms through dynamic analysis ( 4 ). For example,
A.CHUTE1 policy includes altitude term. PGFUZZ includes the
WIND_SPEED environmental parameter in its fuzzing space (See
InputE-term map ( 4b ) because it changes the altitude of the
vehicle. Here, we exclude ABS_PRESS configuration parameter.
Though it is related to the altitude term of the policy, ABS_PRESS
is a read-only parameter (See InputP-term map ( 4a ).

Fifth ( 5 ), the profiling engine first extracts the inputs related to
each policy from input-term mappings, 4a , 4b , and 4c , then, it con-
structs input-policy map ( 5a ). For instance, the A.CHUTE1 policy in-
cludes the altitude term. The profiling engine finds inputs related to
the altitude including Wind_speed and Parachute in Figure 3.

Lastly, it analyzes the unknown time constraints of MTL
formulas ( 6 ). For instance, A.BRAKE1 policy3 is represented as
� {(Modet = BRAKE)→ (♦[0,k]Post = Post−1)}. To detect true

2�{(Parachute=on)} → {(Armed = true) ∧ (Modet 6=
FLIP/ACRO)∧(ALTt≤ALTt−1)∧(ALTt>CHUTE_ALT_MIN)}

3When the vehicle is in BRAKE mode, it must stop within k seconds.

positive policy violations, we obtain unknown time constraints k
by conducting dynamic analysis with the input-policy map ( 5a ).

Mapping Each Policy onto Terms ( 1 ). A policy is composed
of the RV’s physical states, configuration parameters, and
environmental factors. In this step, we decompose each policy
into terms, where each term is further analyzed to find the related
inputs to be fuzzed (detailed below). First, we manually construct
a list of physical states of the studied RVs (e.g., altitude, roll angle)
through their manuals (the complete list of states is presented
in Table XI Appendix A). If a policy includes one of those states,
it is marked as a physical state and added to the policy-term map.
Turning to A.CHUTE1 policy, parachute, armed, mode, and altitude
are all physical states and added to the policy-term map ( 1a ).
Second, a policy may contain configuration parameters (InputP)
and environmental factors (InputE) because a vehicle’s operation
depends on their values. We search each term that includes InputP
and InputE terms to find out whether a policy includes them. If
there is a match, we similarly add these terms to the policy-term
map. For instance, A.CHUTE1 policy includes CHUTE_ALT_MIN
configuration parameter, and no environmental factor as a term;
thus, the CHUTE_ALT_MIN is added to the policy-term map.

Static Analysis for Narrowing Fuzzing Space ( 2 ). The
static analysis is used for identifying the terms related to each
configuration parameter (InputP, 2 and 2a in Figure 3). We use
two complementary approaches to identify the related terms: (1)
conducting static analysis at the LLVM intermediate representation
(IR) level, and (2) parsing vehicle manuals.

First, we map each configuration parameter on the vehicle
manuals to a variable in the source code. This allows us to know
how the control program imports the parameters to the source code.
For instance, our target control programs (i.e., ArduPilot, PX4, and
Paparazzi) parses XML files containing a list of parameter names
and valid ranges, then convert them to variables in the source code.
Figure 4 shows how each control program accesses the imported
configuration parameters. ArduPilot and PX4 store the parameters
as data members of classes and access the parameters via a function
call or directly access the data member. Paparazzi loads the param-
eters’ values to the data section of memory via global variables.

Second, we build def-use chains of the identified parameter
variables to map each parameter to related terms in the MTL
formulas ( 3 in Figure 2). We use LLVM to obtain the def-use
chains defining these terms in the code. The code to load the
imported parameters, which we previously identified, serves as the
starting point to build these def-use chains. For scalars, we follow
load and store operations recursively. For pointers, to identify
data flow via pointer reference/dereference operators, we perform
an inter-procedural, path-insensitive, and flow-sensitive points-to
analysis [62]. More precisely, the profiling engine operates in three
steps: (1) performs Andersen’s pointer analysis [8] to identify
aliases of the parameter variables, (2) transforms the code to its
single static assignment form [59] and builds the data-flow graph
(DFG), and (3) collects the def-use chain of the identified parameter
variable from the built DFG.
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Fig. 3: Profiling engine ( 4 in Figure 2) steps to reduce the large input space of RVs. It outputs an input set related to each policy (the
input-policy map 5a ) using input-term maps ( 4a , 4b , and 4c ) via static and dynamic analysis.

// ArduPilot

AP_GROUPINFO(“TEMP”, 3, AP_Baro, ground_temp);

// PX4

(ParamInt<px4::params::NAV_DLL_ACT>) _param_nav_dll_act;

// Paparazzi

static float phi_pgain[] = STABILIZATION_ATTITUDE_PHI_PGAIN;

static float psi_pgain[] = STABILIZATION_ATTITUDE_PSI_PGAIN;

if Mode_c == ALT_HOLD:

P1 = 1

else:

P1 = -1

if Throttle_c == 1500:

P2 = 1

else:

P2 = -1

if ALT_c != ALT_p:

P3 = 1

else:

P3 = -1

if (-1 * MIN (P1, P2, P3)) < 0:

// policy violation occurs

Death 

Education

Fig. 4: A code block that illustrates how the control programs
access parameters after they import the parameters to their source
code. The blue-colored variables represent the parameters.

Third, we manually construct a synonym table (as shown
in Figure 5). This table maps source code variable names to the
names used as terms by the MTL formulas. Using this table and
the previously generated def-use chains, the profiling step can
determine which source code variable corresponds to which term in
the considered MTL formulas and, in turn, which inputs influence
which internal variable (Figure 5). In this way, PGFUZZ knows
which inputs should be mutated to affect specific terms in the
identified MTL formulas. For example, this step finds that TEMP
configuration parameter is used for the altitude state because
altitude at line 320 reads temp, which comes from the TEMP
parameter value. By using this knowledge, PGFUZZ mutates the
TEMP parameter when, for instance, it tests the A.CHUTE1 policy,
since this policy includes the altitude state ( 1a in Figure 3). We
manually build a synonym table for ArduPilot, PX4, and Paparazzi.

Lastly, the profiling engine parses official documentation,
provided by RVs’ control software developers in XML file format.
This documentation describes each configuration parameter’s role.
It has been designed to help developers and/or users. The profiling
engine first extracts all words from each parameter’s description
in this documentation, and then it matches the extracted words with
the synonym table. For instance, ArduPilot’s manual states that “it
is an angle limit (to maintain altitude) time constant” to explain the
ATC_ANG_LIM_TC parameter’s role. Our profiling step matches the
ATC_ANG_LIM_TC parameter with the altitude term.
Dependency among Inputs ( 3 ). Some inputs need to
be preceded by other inputs to be executed. For instance,
the Parachute command can only be triggered if the
CHUTE_ENABLED parameter is true. In this step, we first find such
inputs, which cannot be effective unless another input precedes.

User parameters (2)
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1 AP_GROUPINFO(“TEMP”, … , ground_temp);

2 _user_temp = ground_temp + 273.15f;

…

315 temp = _user_temp

…

320 altitude = 153.8462f * temp * …

[definition, write access, read access]

(1) [ground_temp, line 1, line 2]

(2) [_user_temp, line 2, line 315]

(3) [temp, line 315, line 320]

TEMP is related to the altitude state!

Source code

Def-use chain

State Synonym

Altitude alt, height, elevation

Yaw heading

 

Synonym table

Recursively search the read 

access of the def-use chain

and compare the variable name 

with synonyms of each state

Starting point for a def-use 

chain of TEMP parameter

Fig. 5: An example code block and def-use chain for illustrating the
profiling engine’s static analysis logic, which recursively searches
the read access of the def-use chain and compares the variable
name in the read access with synonyms.

Then, we identify which input should be executed first to execute
the target input. Further, we narrow down the fuzzing inputs by
eliminating user commands (InputC) and configuration parameters
(InputP) that RV simulators do not support ( 4 in Figure 3).

First, we find those InputC and InputP which cannot be
effective unless another input precedes. To this end, we conduct the
following steps. (1) We log all state values (e.g., altitude and roll
angle) for one minute per each operation mode (e.g., FLIP flight
mode) without any input. Then, we calculate a standard deviation
of each vehicle state (SD{State(i)}). (2) We assign a random value
(randj) to inputj where inputj∈ InputC∪InputP, and execute
it in the simulator. Specifically, we randomly assign true or false
when an input requires a Boolean value, and a value within a valid
range specified in the vehicle documentation when the input takes a
continuous value. If the documentation does not explicitly mention
the valid range, we assign a random number within -232 − 232.
(3) We then log all state values for one minute per each operation
mode. We repeat these three steps 10 times and compute a standard
deviation per each vehicle state (SD{State(i,j)}). After these steps
are completed, we obtain two types of states: states without any
input and states with the inputj. If the inputj does not affect any
state values (|SD{State(i)}−SD{State(i,j)}|<SD{State(i)}),
we conclude that the inputj requires another input to impact the
state values.

Second, to find another input that enables inputj to be
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activated, we conduct the following steps: (1) We select another
input inputk where inputk ∈ InputC∪InputP. (2) We assign
a random value to the inputk and execute it in the simulator.
(3) We make the vehicle stay in a stable state (i.e., same
position and attitude). (4) We assign the previously used randj
to the inputj and execute it in the simulator, while logging
all state values for one minute per each operation mode. (5)
We check if the inputj still does not affect any state value
(i.e., |SD{State(i)}−SD{State(i,kj)}|<SD{State(i)}). If that
is the case, we repeat step (2) through (5) up to 10 times. If
the inputk enables the inputj to change RV’s state values
(i.e., |SD{State(i)}−SD{State(i,kj)}|>SD{State(i)}), we
conclude that the inputj requires the inputk to be executed.
However, if none of the inputk can enable inputj, we conclude
that the simulators do not support that inputj.

For example, when inputj is the Parachute command and
inputk is the CAM_TRIGG_TYPE parameter, which defines how to
trigger a camera to take a picture, the altitude state values remain un-
changed. This is because the CAM_TRIGG_TYPE parameter cannot
trigger the execution of the Parachute command. On the other
hand, if inputj is the Parachute command and inputk is the
CHUTE_ENABLED parameter, altitude values change significantly
|SD{State(i)}−SD{State(i,kj)}|>SD{State(i)}. Particularly,
the CHUTE_ENABLED parameter enables deploying the parachute
with the Parachute command, which impacts the altitude.
Hence, the profiling engine identifies that the Parachute com-
mand is dependent on the CHUTE_ENABLED parameter. Therefore,
for PGFUZZ to deploy the parachute, first the CHUTE_ENABLED
parameter must be enabled, and then the Parachute can be sent.

Dynamic Analysis for Narrowing Fuzzing Space ( 4 ). In
this step, we analyze which states of the vehicle change
according to the executed input. We first collect all state
values while executing inputj as described in the previous
step (dependency among inputs ( 3 in Figure 3)). If
|SD{State(i)}−SD{State(i,j)}|>SD{State(i)}, we conclude
that the inputj changes the Statei. To illustrate, Figure 6
depicts the results of the dynamic analysis for the throttle user
command in ArduPilot. The throttle user command impacts
four vehicle states: heading, throttle, altitude, and climb. Figure 6
also shows that the throttle command affects the vehicle
differently depending on the flight mode. This is because the
vehicle interprets (or ignores) the throttle command differently
based on the flight mode. For instance, to test the A.CHUTE1 policy,
PGFUZZ mutates the throttle command since it affects the
altitude of the vehicle.

Extracting Inputs Related to Each Policy ( 5 ). In this step,
we first extract the inputs related to each policy from input-term
mappings, 4a , 4b , and 4c . Then, we construct the input-policy
map ( 5a ). It represents a set of inputs per each policy, in which
PGFUZZ will mutate those inputs to test each policy.

Analyzing Unknown Time Constraints of MTL formulas ( 6 ).
In this step, we determine the unknown time limit k in MTL formu-
las (e.g., when the vehicle is in BRAKE mode, it must stop within k
seconds: �{(Modet=BRAKE)→(♦[0,k]Post=Post−1)}). This en-
sures the detected policy violations are true positives. To this end, we
conduct the following steps: (1) We decompose the policy to terms,
e.g., the A.BRAKE1 policy (defined above) consists of two terms:
mode and position. This procedure is explained in detail in 1 -
Mapping Each Policy onto Terms. (2) We randomly select one of the
inputs related to the policy from the input-policy map 5a in Figure 3,
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Fig. 6: Results of profiling throttle user command in
ArduPilot. The x-axis represents each flight mode, and y-axis the
|SD{State(i,no-input)}−SD{State(i,throttle)}| where i denotes
i-th state. The throttle user command changes four states:
heading, throttle, altitude, and climb.

Algorithm 1 Policy-Guided Fuzzing
Input: A simulator SIM, minimized fuzzing space Inputmin, input-policy maps
MAP, an MTL formula φ, a fuzzing time limit τ

Output: A policy violation V and an input sequence causing the violation Vset
1: function FUZZING(SIM, MAP, Inputmin, φ, τ) . Main
2: inputseq= /0 . Initialize the input sequence
3: while V= /0 or total_time<τ do
4: input←MUTATE(MAP, Inputmin, φ, DIS) . Get a mutated input
5: S← SIM.execute(input) . Collect RV’s states (S) from SIM
6: S← NOISE.elimination(S) . Eliminate environmental noise
7: DIS← UPDATE_DISTANCE(φ, S) . Calculate distances
8: V← POLICY_CHECK(φ, DIS) . Check policy violations
9: inputseq=inputseq∪input

10: end while
11: Vset← POST_BUG(inputseq, V) . Conduct Bug Post-Processing
12: return 〈V,Vset〉
13: end function
14: function MUTATE(MAP, Inputmin, φ, DIS) . Mutating inputs via MTL
15: input← RANDOM(Inputmin, MAP) . Randomly pick an input
16: input← GUIDANCE(input, φ, DIS) . Pick values based on DIS
17: return input
18: end function

assign a random value to the input, and execute it in a simulator. (3)
We make the vehicle satisfy the precondition (e.g., Modet=BRAKE)
and measure the time required (k) to satisfy the desired states
(e.g., Post=Post−1) in the simulator. (4) We negate the precondi-
tion to test again with another random input. We repeat the steps (2)
to (4) 100 times, and we define k as the maximum required time. For
instance, the profiling engine notices that the BRAKE mode requires
a maximum of 12.7 seconds to stay in the same position. Therefore,
PGFUZZ starts checking the policy violation after this time limit.

B. Policy-Guided Fuzzing

The Policy-Guided Fuzzing component discovers policy
violations given the minimized input space Inputmin derived at
the Pre-Processing component.

1) Overview of Policy-Guided Fuzzing: Algorithm 1 details
the Policy-Guided Fuzzing component’s steps. The algorithm
repeatedly conducts the following: (1) randomly picks an input from
Inputmin and the input-policy maps at line 15, (2) assigns a value to
the selected input based on the propositional distances at line 16. For
example, when PGFUZZ increases a value of the input and it causes
an increase in a propositional distance, PGFUZZ keeps assigning
the same value to the input when PGFUZZ selects the input again
(Section V-B4), (3) executes the mutated input on the simulator
at line 5, (4) eliminates environmental noise of the physical states
at line 6 (Section V-B2), (5) calculates distances according to the
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changed states at line 7 (Section V-B3), and (6) if PGFUZZ detects
a policy violation at line 8, it sends all mutated inputs (inputseq)
to the Post Bug-Processing component at line 11 (Section V-C).
PGFUZZ repeats these steps until it detects a policy violation, or
the fuzzing time is reached to a user-defined upper limit (τ).

2) Noise Elimination: In this step, we eliminate the
environmental noise such as sensor noise and wind effect. Without
noise elimination, PGFUZZ may incorrectly guide the mutation
engine (as we illustrate in Figure 7 in our evaluation). For instance,
let us assume our mutation engine’s goal is to minimize the altitude
(to trigger a policy violation) and at time T=1, Alt=15. Then,
PGFUZZ executes an input to decelerate the motors’ speed. This
input decreases the altitude under normal conditions. However,
if strong wind and sensor noise occur together with the input, the
altitude increases by 2 meters, T=2, Alt=17. Then, PGFUZZ
wrongly determines that executing the input to decelerate the
motors’ speed increases the altitude. Hence, at T=3 PGFUZZ
increases the motors’ speed, which further increases the altitude. To
address this, we use reference state values in the control algorithms
of flight control software. For example, ArduPilot’s control
algorithm keeps calculating reference altitude ALTref, that is the
expected altitude value without noise. The reference altitude is used
to compute an altitude error as ALTerr=ALTref−ALTact where
ALTact denotes the altitude measured by sensors. Hence, ALTerr
represents the difference between the measured altitude and the
expected altitude. Control programs calculate the reference states
from a filtering algorithm such as the Kalman filter. However, the
reference states still include noise in harsh environmental conditions
(e.g., 10 m/s wind speed). To handle this problem, PGFUZZ also
leverages moving average to eliminate the environmental noise:
Moving_average(State_iact+State_ierr) where State_i
denotes each state (Detailed in Section VII-A2).

3) Policy Checker: The policy checker evaluates an MTL
formula on the RV’s states in a simulation. Given the MTL formula
and the RV’s physical states after executing a fuzzing input, the
policy checker outputs (i) propositional distances to guide the
mutation engine and (ii) a global distance to inform the bug oracle
on a violated policy. The distances quantify how close a proposition
and an MTL formula is to the policy violation, where negative
distances indicate that a proposition or a policy is unsatisfied and
positive distances indicate it is satisfied. The propositional distances
are unified to derive the global distance, which indicates whether
the MTL policy holds or not. The policy checker first converts
the MTL formula in the always form into an MTL formula in not
eventually form, and then, it arithmetically calculates the distances.

First, the policy checker converts the “imply” operator (→)
to the “and” operator (∧) and negates the propositions that
are at the right-hand side of the “imply” operator (Detailed in
Appendix B). For instance, the A.CHUTE1 policy’s MTL formula4

is converted to ¬♦[{(Parachute=on)}∧{(Armed 6=true)∨(Modet=
FLIP/ACRO)∨(ALTt>ALTt−1)∨(ALTt<CHUTE_ALT_MIN)}].

Second, the policy checker derives the propositional distances
as a normalized difference and uses them to compute the
global distance [29], [64]. We define the propositional distances
as a positive value if the proposition is true, and a negative
value if it is false. Particularly, if the terms in a proposition
are binary (e.g., Parachute=on), the distance is set to 1

4�{(Parachute=on)} → {(Armed = true) ∧ (Modet 6=
FLIP/ACRO)∧(ALTt≤ALTt−1)∧(ALTt>CHUTE_ALT_MIN)}

when the proposition is satisfied and −1 when it is not. In
contrast, a numerical distance is computed as a normalized
difference (e.g., (CHUTE_ALT_MIN − ALTt)/CHUTE_ALT_MIN)
when the terms in a proposition are numeric
(e.g., (ALTt>CHUTE_ALT_MIN)). The propositional distances
(P1−P5) of the parachute policy are:

(1) P1 =

{
1 if Chutet=on

−1 if Chutet 6= on

(2) P2 =

{
1 if Armedt 6= true

−1 if Armedt=true

(3) P3 =

{
1 if Modet = FLIP/ACRO

−1 if Modet 6= FLIP/ACRO

(4) P4 =
ALT_t − ALTt−1

ALT_t

(5) P5 = CHUTE_ALT_MIN − ALTt
CHUTE_ALT_MIN

We compute the global distance based on the propositional
distances. Particularly, the arithmetic global distance is derived by
converting “not”, “and”, “or” to−1, min, and max [29], [64]. The
A.CHUTE1’s global distance is−1×[min{P1,max(P2,P3,P4,P5)}]. To
automatically generate code snippets to compute the propositional
and global distances, the policy checker first creates a binary
expression tree based on the converted MTL formula in not
eventually form, then, it traverses the nodes of the tree (a detailed
example is given in Appendix B). Lastly, the policy checker flags
a policy violation when the global distance becomes negative.

4) Mutation Engine: The mutation engine feeds inputs to the
simulator to minimize the global distance, where the negative
values of the global distance indicate a policy violation. We notice
that maximizing the propositional distances (and making them
positive) results in minimizing the global distance (and making
it negative) since the propositional distances are negated while
computing the global distance. Turning back to the A.CHUTE1
policy, the global distance −1×[min{P1,max(P2,P3,P4,P5)}] is
negative when the propositional distances are positive. Hence, the
mutation engine conducts the following steps to maximize the
propositional distances. (1) It first randomly selects an input from
the Inputmin of the target policy, which is stored in the input-policy
map. Then, it randomly selects a value and assigns it to the input.
(2) It executes the selected input on the simulator, computes the
propositional and global distances, and flags a policy violation
if the global distance becomes negative. (3) If the executed input
increases the propositional distance, the mutation engine stores
the input with the assigned value. For instance, if the input is
increasing the altitude, it contributes to increasing the propositional
distance P4. The mutation engine stores this input-value pair
(altitude,increase). (4) When the mutation engine randomly
selects the stored input again (e.g., changing altitude), it applies
the stored value to the input instead of randomly assigning a new
value to the input. For instance, it executes (altitude,increase)
to keep increasing the propositional distance. The mutation engine
repeats the step (1)-(4) until it finds a policy violation. If PGFUZZ
cannot find a policy violation, it stops fuzzing when the input
sequence’s size is more than 1,000 or fuzzing time is more than
2 hours. Then, PGFUZZ changes the target policy to another one.

5) Working Example: Table II shows an example of how
our Policy-Guided Fuzzing works. The example focuses on the
A.CHUTE1 policy. When T=1, the mutation engine ( 5 in Figure 2)
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Time
(T)

Parachute
(on/off)

Armed
(on/off)

FLIP/ACRO mode
(true/false)

Measured
altitude (m)

Filtered
altitude (m) p1 p2 p3 p4 p5 Global distance

(−1×[min{P1,max(P2,P3,P4,P5)}])
Fuzzed input

for next time T
1 off on false 92 94 -1 -1 -1 0 0.06 1 WIND_SPEED = 5
2 off on false 93 95 -1 -1 -1 0.01 0.05 1 Parachute = on
3 off on false 95 95 -1 -1 -1 0 0.05 1 Increase throttle
4 off on false 97 99 -1 -1 -1 0.04 0.01 1 WIND_SPEED = 5
5 off on false 102 104 -1 -1 -1 0.05 -0.04 1 Parachute = on
6 on on false 106 106 1 -1 -1 0.02 -0.06 -0.02 -

TABLE II: Propositional and global distances guided with InputC, InputP, and InputE (CHUTE_ALT_MIN is set to 100 meters).

randomly selects an input from the identified Inputmin ( 4 ).
It chooses WIND_SPEED parameter and assigns a random value
(i.e., 5) to the parameter. When T=2, PGFUZZ calculates actual al-
titude based on the deviation between reference and current altitudes
from 6 . PGFUZZ predicts the actual altitude is 95 meters instead
of 93 meters ( 7 ), eliminating the noise. The mutation engine first
notices that the changed wind speed increases P4 but it decreases P5.
Then, it stores the input-value pair, i.e., (WIND_SPEED,5) which will
be used if the mutation engine randomly selects the WIND_SPEED
parameter again. The mutation engine randomly chooses a user com-
mand (i.e., releasing a parachute command). However, ArduPilot
does not deploy the parachute at T=3 because the current altitude
(i.e., 95 meters) is less than CHUTE_ALT_MIN which is 100 meters
as default. PGFUZZ increases the throttle value, increasing altitude
as the next input at T=3. At T=4, the global distance is the same as
the previous one. However, it increases the P4 propositional distance
due to the increased altitude. Therefore, the mutation engine also
stores the pair of input and value, i.e., (throttle,increase). It
first randomly selects the WIND_SPEED parameter again as the next
input, then, it assigns the stored value 5 to the parameter. At T=5,
PGFUZZ randomly selects releasing a parachute command as the
next input. At T=6, the policy violation checker ( 8 ) detects a
policy violation because the parachute is deployed while the vehicle
is climbing, which violates A.CHUTE1.

C. Bug Post-Processing

PGFUZZ conducts Bug Post-Processing to find the minimized
sequence of inputs that causes a policy violation. The minimized
sequence can be later used to analyze the violation’s root cause.
The Bug Post-Processing consists of the bug pool ( 9 in Figure 2)
and input minimization steps ( 10 in Figure 2).

The bug pool first stores the violated policy (policyV) with an
input sequence that causes the policy violation. The input sequence
consists of each pair of input and mutated value (inputi,valuei)
where inputi∈Inputmin. The input sequence includes all inputs
and values from the start of fuzzing a policy until finding a policy
violation. Therefore, it might contain some inputs which do not
contribute to the policy violation i.e., the same policy violation can
be triggered without executing some of the inputs. For example, the
input sequence {(mode=ACRO),(wind=5),(parachute=on)}
violates A.CHUTE1 policy5. However, (wind=5) does not
contribute to the policy violation.

Second, to find the inputs that contribute to the policy violation,
the input minimization step operates as follows: (1) It creates
a new process to execute a separate simulator. (2) It creates a
new input sequence by excluding an input (inputi) from the
original input sequence that caused the violation (input(1,...,n)). For
instance, it excludes (parachute=on) from the input sequence
{(mode=ACRO),(wind=5),(parachute=on)}. (3) It executes

5�{(Parachute=on)} → {(Armed = true) ∧ (Modet 6=
FLIP/ACRO)∧(ALTt≤ALTt−1)∧(ALTt>CHUTE_ALT_MIN)}

(input(1,...,i−1,i+1,...,n),value(1,...,i−1,i+1,...,n)) on the simulator
(e.g., {(mode=ACRO),(wind=5)}). (4) If the new input sequence
does not lead to the same policy violation, PGFUZZ notices
that the pair of inputi and valuei is mandatory to violate the
policy. For example, the A.CHUTE1 policy cannot be violated
without (parachute=on). We repeat from step (2) to (4) until
the input minimization step finds a minimized input sequence
which still causes the same policy violation. Turning back to
the A.CHUTE1 policy example, the minimized input sequence is
{(mode=ACRO),(parachute=on)}.

Users can easily perform a root cause analysis based on
the minimized input sequence with a violated policy. For
instance, they can identify a missing flight mode check from
{(mode=ACRO),(parachute=on)}. We provide such examples
when we introduce the case studies in Section VII-C1.

VI. IMPLEMENTATION

We evaluate PGFUZZ on the three most popular flight control
software, ArduPilot, PX4, and Paparazzi as target RV controllers.
Simulator Configuration. All of the three flight control software
use MAVLink [47] as their communication protocol between
the flight control software and Ground Control Stations (GCSs).
However, each flight control software implements the MAVLink
protocol differently. To deploy PGFUZZ on ArduPilot and PX4,
we choose Pymavlink v2.4.9 library [56] and PPRZLINK v2.0
library [51] for Paparazzi. Their libraries allow PGFUZZ to control
vehicles through MAVLink v2.0.
Static Analysis. We choose the Low Level Virtual Machine
(LLVM) 9.0.0 [45] to convert source code of the three flight control
software to bitcode, the intermediate representation (IR) of LLVM.
To obtain data flow graphs (DFG), we use a Static Value-Flow
Analysis tool [62]. We wrote 386 lines of code (LoC) in C to
collect all def-use chains of InputP and correlate each state and
InputP. To map names of variables on source code to names of
states on policies, we manually construct a variable name mapping
table (i.e., synonym table Figure 5) for each flight control software.
Dynamic Analysis. We write 586 LoC in Python using Pymavlink
APIs for ArduPilot. We modify 54 LoC to integrate it into PX4.
We also write 741 LoC in Python for PPRZLINK as Paparazzi
uses a different library than others.
Mutation Engine. We write a total 1,379 LoC in Python for
mutation engine, noise elimination, and policy checking. We
modify 94 LoC of 1,379 LoC for PX4 as they differently implement
MAVLink. We write 1,830 LoC for Paparazzi.
Bug Post-Processing. We use Pymavlink and PPRZLINK APIs to
implement the Bug Post-Processing component. We write 626 LoC
in Python for ArduPilot and PX4, and 794 LoC for Paparazzi.

VII. EVALUATION

We first evaluate how each component of PGFUZZ contributes
to the overall fuzzing effectiveness (Section VII-A). We then
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RV system # of InputP
After static

analysis filtering
After dynamic

analysis filtering
% of reduced

target input space
ArduPilot 1,140 268 209 18.3 %
PX4 579 333 176 30.3 %
Paparazzi 82 57 51 62.2 %

TABLE III: Reduced fuzzing space for configuration parameters
(InputP).

RV system # of InputC # InputE
After dynamic

analysis filtering
% of reduced

target input space
ArduPilot 58 168 150 66.4 %
PX4 66 30 43 44.8 %
Paparazzi 116 8 46 37.1 %

TABLE IV: Reduced fuzzing space for user commands (InputC)
and environmental factors (InputE).
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Fig. 7: The changed sensor values under LOITER flight mode with
environment factors.

evaluate PGFUZZ’s effectiveness in finding bugs in real flight
control software, ArduPilot, PX4, and Paparazzi (Section VII-B).

A. Component Evaluation

1) Profiling Engine Evaluation: Table III shows the fuzzing
space reduction generated by the Pre-Processing step, relative to
configuration parameters (InputP). The decreased fuzzing space
on ArduPilot, PX4, and Paparazzi is 18.3%, 30.3%, and 62.2%,
respectively. PGFUZZ achieves the highest reduction rate in
ArduPilot because ArduPilot includes 504 hardware configuration
parameters which are irrelevant for our analysis and 21 read only
parameters. On the other hand, it shows the lowest reduction rate
on Paparazzi because most of its 82 configuration parameters
related to attitude and altitude control algorithm (i.e., KP,Ki, and
Kd of the PID control algorithm Section II) have a direct effect
on the drone’s behavior. Table IV shows reduced fuzzing space
for user commands (InputC) and environmental factors (InputE).
The decreased fuzzing space on ArduPilot, PX4, and Paparazzi
is 66.4%, 44.8%, and 37.1%, respectively.

2) Noise Elimination: Figure 7 shows the results of the noise
elimination component ( 7 in Figure 2) on ArduPilot. We record
the sensor values every 10 ms and use 10 m/s wind speed, the
wind direction of 60 degrees Z-axis, 3 m/s2 acceleration noise,
and LOITER flight mode6. We configure the width of the moving
average window as 4 in the noise elimination component. As
shown in Figure 7, it filters out the changes in attitude due to the
noise and wind. The areas with a red background in the figure
indicate when the wind is enabled.

B. Framework Evaluation

To evaluate the effectiveness of PGFUZZ, we integrate it into
ArduPilot, PX4, and Paparazzi, to find safety and security policy
violations. Table V presents the software version and subject

6In LOITER mode, the flight control software automatically maintains the
current location, heading (i.e., yaw), and altitude.

RV system Version Subject Vehicle Simulator

ArduPilot 4.0.3
Quadrotor

APM SITL [9]
Gazebo [33]

PX4 1.9 JSBSim [18]
Gazebo

Paparazzi 5.16 NPS [49]
Gazebo

TABLE V: Fuzzing target RVs.
ID Description

A.ALT_HOLD2
PP.HOVERZ

If the throttle stick is in the middle (i.e., 1,500) the vehicle must maintain
the current altitude.

A.FLIP1 If and only if roll is less than 45 degree, throttle is greater or equal to 1,500,
altitude is more than 10 meters, and the current flight mode is one of ACRO
and ALT_HOLD, then the flight mode can be changed to FLIP.

A.GPS.FS1 When the number of detected GPS satellites is less than four, the vehicle
must trigger the GPS fail-safe mode.

A.LOITER1
PX.HOLD1
PP.HOVERC

The vehicle must maintain a constant location, heading, and altitude
.

A.CHUTE1 Parachute can be deployed only when the following conditions are satisfied:
(1) the motors must be armed, (2) the vehicle must not be in the FLIP
or ACRO flight modes, (3) the barometer must show that the vehicle is
not climbing, and (4) the vehicle’s current altitude must be above the
CHUTE_ALT_MIN parameter value.

A.RC.FS1 If and only if the vehicle is armed in ACRO mode and the throttle input
is less than the minimum (FS_THR_VALUE parameter), the vehicle must
immediately disarm.

A.RC.FS2 If the throttle input is less than FS_THR_VALUE parameter, it must change
the current mode to the RC fail-safe mode.

ALIVE The vehicle must keep sending heartbeat messages to ground control
systems every k seconds (this policy applies to A/PX/PP).

PX.GPS.FS1 If time exceeds COM_POS_FS_DELAY seconds after GPS loss is detected,
the GPS fail-safe must be triggered.

PX.GPS.FS2 If the GPS fail-safe is triggered and a remote controller is available, the
flight mode must be changed to ALTITUDE mode.

PX.TAKEOFF1 When the vehicle conducts a taking off command, the target altitude must
be the MIS_TAKEOFF_ALT parameter value.

TABLE VI: Example policies violated by ArduPilot (A), PX4 (PX)
and Paparazzi (PP) (See Appendix E for complete list of policies).

vehicles used in our evaluation. We run PGFUZZ for 48 hours
using Ubuntu 18.04 64-bit running on an Intel Core i7-7700 CPU
@ 3.6 GHz with 32 GB of RAM.

We identify policies based on their documents and represent
them in MTL formulas. Table VI presents example identified
policies. However, we found that each flight control software
has a different level of detail in its documentation. For instance,
ArduPilot provides detailed documentation that explains its correct
operations, including its intended behavior in each flight mode and
fail-safe logic. In contrast, Paparazzi does not provide appropriate
documentation that explains its correct operation. To extract
policies from Paparazzi, we used developer comments in the source
code, which details the correct behavior of vehicles in different
flight modes, and we converted them to MTL formulas.

Our evaluation results are shown in Table VII. PGFUZZ
found a total of 156 bugs. Some policy violations are caused by
multiple bugs. For instance, A.ALT_HOLD2 was violated by either
a broad valid range of parameters or GPS failure (Detailed in
Section VII-C2). Moreover, some bugs cause multiple violations,
e.g., repeatedly activating the FLIP mode makes the vehicle crash
on the ground. This violates both A.FLIP1 and A.ALT_HOLD2
policies. We group found bugs into four categories. (1) “Broad valid
range” bugs mean that valid ranges of configuration parameters are
set incorrectly. For example, ATC_RATE_R_MAX has a valid range
from 0 to 1080. However, when users assign less than 100, the
vehicle leads to unstable attitude control and crashes on the ground.
(2) “Misimplementation” bugs happen when a feature does not
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Policy # of
bugs

Root cause Physical effect
Broad

valid range Misimplementation Unimplemented No checking
valid range

Crash
on the ground

Software
crash

Unstable
attitude

Unexpected
behavior

A.ALT_HOLD2 7 2 5 4 3
A.FLIP1 1 1 1
A.FLIP1
A.ALT_HOLD2 1 1 1
A.GPS.FS2 1 1 1
A.LOITER1 8 2 1 5 1 4 3
A.CHUTE1 1 1 1
A.RC.FS1 1 1 1
A.RC.FS2 1 1 1
A.ALIVE 82 5 77 82
Total (ArduPilot) 103 4 17 0 82 6 82 4 11
PX.ALIVE 8 8 8
PX.GPS.FS1 2 2 2
PX.GPS.FS2 2 2 2
PX.HOLD1 23 20 1 2 9 13 1
PX.TAKEOFF1 1 1 1
Total (PX4) 36 20 6 8 2 9 8 13 6
PP.HOVERC 10 10 4 6
PP.HOVERZ 7 7 1 2 4
Total (Paparazzi) 17 17 0 0 0 5 0 8 4
Total (all) 156 41 23 8 84 20 90 25 21

TABLE VII: Summary of found 156 previously unknown bugs in the three popular flight control software. PGFUZZ found 103 previously
unknown bugs in ArduPilot, 36 in PX4, and 17 in Paparazzi. (The policy descriptions are given in Appendix E.)

work properly either under normal or in a particular situation after
developers implement the feature. For instance, PX4 fails to trigger
a GPS fail-safe mode in specific flight modes. (3) “Unimplemented”
bugs refer to unimplemented sensor failure handling conditions
though these are mentioned in their documents. We found such
bugs, particularly in PX4. (4) “No checking valid range” bugs
mean that valid ranges of configuration parameters are not checked.
For instance, a vehicle yields a floating-point exception when
the ATC_RATE_R_MAX parameter is assigned to a value out of its
predefined range. The identified policy violations cause different
undesired behaviors in the vehicles, as shown in the Table VII
“Physical effect” column. We divide the physical effects of the
bugs into four categories. (1) “Crash on the ground” represents
the vehicle that loses its attitude control and then sends a free fall
warning message to the GCS. (2) “Software crash” happens when
the flight control software crashes due to a floating-point exception.
(3) “Unstable attitude” represents a vehicle having a fluctuating
attitude. (4) “Unexpected behavior” represents all the other issues,
including non-checking preconditions to change vehicle states (Sec-
tion VII-C1), failing to stay at the same altitude (Section VII-C2),
wrongly calculated altitude after acrobatic flying (Section VII-C3),
and failing to trigger a fail-safe mode (Section VII-C4).

Analysis of Bugs. We refer to the “misimplemented” and
“unimplemented” categories in Table VII as logic bugs. Out of 156
bugs, PGFUZZ detected 31 (19.9%) logic bugs. The “broad valid
range” and “no checking valid range” bugs involve input validation
and memory safety bugs. We consider an input validation bug as
a memory safety bug when it causes memory corruption. PGFUZZ
detected 90 (57.7%) memory safety bugs and 35 (22.4%) input
validation bugs. Lastly, we refer to the identified bugs as harmless
when they do not cause a crash, unstable attitude, and incorrect
altitude. For instance, assigning wrongly converted angles to a
camera gimbal does not lead to any operational effect on the vehicle.
PGFUZZ detected 11 (7.05%) harmless bugs out of 156 bugs.

False Positives. We found a set of input combinations cause false
positives in the violated policies. For instance, when PGFUZZ
assigns zero to SIM_ENGINE_MUL parameter in ArduPilot, the
simulator turns off the vehicle’s engine, which leads to a policy

Input types causing bugs # of bugs
InputP 120
InputC 10
InputE 2
InputP and InputC 20
InputP and InputE 3
InputP, InputC, and InputE 1
Total 156

TABLE VIII: Required input types to trigger bugs. InputP,
InputC, and InputE represent configuration parameters, user
commands, and environmental factors.

violation. We exclude such inputs (InputC, InputP, and InputE)
from our analysis. Further, we found that a vehicle might crash on
the ground and violate policies while PGFUZZ operates the vehicle
too acrobatically. Thus, we also limit inputs leading the acrobatic
operations (Detailed in Appendix C).

Analysis of Input Types. Each policy violation is triggered by
different types of inputs. Table VIII presents the number of bugs
caused by different input types. This analysis details the capabilities
that an adversary requires to trigger a bug. More specifically, an
adversary who can change one of the configuration parameters,
user commands, or environmental factors is able to trigger 132 out
of 156 bugs. Additionally, 23 bugs require changing two types of
inputs, and only one bug requires control over three types of inputs.

Comparison of PGFUZZ with no Policy-guided Mutation. We
compare the results of PGFUZZ with fuzzing without using policy
guided mutation with (a) excluded input space from the profiling
engine, i.e., inputs unrelated to policies, (b) full input space, and
(c) reduced input space. In all cases, inputs are randomly sampled
from the input space. Figure 8 compares the results of PGFUZZ
with (a), (b), and (c), the time vs. the cumulative number of found
bugs overtime on the three systems. PGFUZZ found the 156 bugs7

in about 48 hours. The fuzzing with no policy guided mutation and
the excluded input space, i.e., in the case of (a), we found only 21

7We note that the total number of bugs 156 does not include the 21 bugs found
by the excluded input space.
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Fig. 8: Results of fuzzing based on our guidance and minimized
input space in ArduPilot, PX4, and Paparazzi.

bugs, in the case of (b), we found 36 bugs, and in the case of (c),
we found 63 bugs. All identified bugs in the case (a), (b), and (c)
are floating-point exceptions.
Accuracy of the Minimized Input Space. PGFUZZ reduces
original input space to a minimized space related to policies (See
Table III and Table IV). If many bugs are triggered by inputs
excluded by the profiling engine ( 4 in Figure 2), PGFUZZ may
miss bugs because it does not mutate inputs from the excluded
input space. However, the excluded input space leads to a total of
21 floating-point exception bugs, as shown in Figure 8. Therefore,
the reduced input space is still effective at finding the bugs due to
mainly two reasons. First, the excluded inputs do not affect physical
states related to the policies. For instance, 132 configuration
parameters in ArduPilot are for on-screen displays on a GCS; thus,
they do not affect the vehicle’s physical states. Second, most of
the excluded inputs are self-sabotaging. For instance, GPIO pin
configurations and commands for turning off actuators. While these
inputs lead to abnormal behaviors, we do not consider these cases as
policy violations/bugs, as discussed in our threat model (Section III).
Comparison of PGFUZZ with RVFuzzer. A recent testing
system, RVFuzzer [41], discovers input validation bugs in RV
control programs. Specifically, RVFuzzer only fuzzes configuration
parameters and a single environmental factor wind to find control
instability bugs, e.g., unstable attitude or deviation from a flight
path. We contacted RVFuzzer’s authors to determine how many
of the bugs reported by PGFUZZ can be discovered by RVFuzzer.
RVFuzzer could find 28 out of 156 bugs. Three reasons prevent
RVFuzzer from detecting the 128 bugs that PGFUZZ reported.
First, if a policy violation does not affect the vehicle’s attitude
and flight path, RVFuzzer cannot detect the violation because
RVFuzzer only uses one policy that defines the stable attitude and
a correct flight path. For example, the aforementioned parachute
requires the flight control software to check some preconditions
to deploy the parachute. However, these conditions, which leads
to unsafe states, are not checked by RVFuzzer. Second, some bugs
are only disclosed with user commands, environmental factors, and
configuration parameters (Section VII-C). However, RVFuzzer only
mutates inputs for the configuration parameters. Lastly, RVFuzzer
cannot discover a set of bugs due to its limited binary search-based
algorithm [40]. For instance, PSC_ACC_XY_FILT has 2.0 as default
value. The vehicle does not show any unsafe state when it has 0 and
2.0. In this case, RVFuzzer concludes that [0,2] is a safe valid range.
However, the vehicle leads to an unstable attitude and even crashes
on the ground when PGFUZZ assigns 0.0001 to the parameter.
Responsible Disclosure. We reported the identified bugs to the
vendors (development teams of RV software). 106 bugs out of the
total 156 bugs have been acknowledged by developers. Table IX
details the bugs for each flight control software whether they are
patched/will be patched. We categorize the 106 confirmed bugs into

# of bugs # of acknowledged
bugs

# of bugs
will be patched

# of patched
bugs

ArduPilot 103 79 5 3
PX4 36 27 21 6
Paparazzi 17 0 0 0
Total 156 106 26 9

TABLE IX: Results of responsible disclosure.
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(a) Changed roll with the parachute
under ALT_HOLD mode.
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(b) Changed roll with the parachute
under FLIP mode.

0 10 20 30
Time (second)

−100

−50

0

50

100

Pi
tc

h 
(d

eg
re

e)

Desired pitch
Measured pitch

(c) Changed pitch with the
parachute under ALT_HOLD mode.
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Fig. 9: The changed attitudes with the parachute. The red, green,
and blue areas on the figures denote the released parachute, FLIP
mode, and landed on the ground, respectively.

four categories based on their physical impact on the vehicle, as
detailed in Table VII. (1) 6 bugs cause crashes on the ground,
(2) 74 bug causes software crashes, (3) 9 bug causes unstable
attitudes (i.e., unstable roll, pitch, and yaw), and (4) 17 bugs cause
unexpected behaviors (i.e., deviating from assigned missions). At
the time of writing, 9 software crash bugs have been patched, and
26 of the bugs are confirmed and will be patched. The remaining 71
bugs are software crash issues in ArduPilot. The root cause of the
71 bugs is that ArduPilot does not check whether some parameters
are within their valid ranges (although these ranges are stated in the
documentation). These missing checks lead to floating-point excep-
tions when they are assigned to too large, too small, or zero values.
Based on the feedback we got from the developers, they stated
that users are responsible for assigning values to these parameters.
For now, they do not consider code updates to prevent users from
assigning unsafe values to the reported parameters. They stated that
if they insert every parameter check code snippet, micro-controllers’
limited memory space may affect the vehicle’s proper operation.

C. Case Studies

We detail four policy violations identified by PGFUZZ. We first
describe the underlying reasons causing each violation and then
show how attackers can exploit them to force undesired vehicle
states. We note that existing RV fuzzing works cannot discover
these bugs because they do not fuzz all input types and do not
implement a proper bug oracle to detect them.

1) Case Study 1 - Unexpected Behaviors due to
Misimplementation: RVs must check a set of preconditions
to safely enter a new state. However, PGFUZZ discovered that
the flight control software does not check the preconditions or
incorrectly verify these preconditions.
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(b) Altitude during ALT_HOLD
mode, when a flip maneuver is
performed.
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(c) Altitude during ALT_HOLD
mode, when a flip maneuver
is performed, and ATC_RAT_-
RLL_FF and ATC_RATE_R_MAX
parameters are set incorrectly.
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(d) Altitude during ALT_HOLD
mode, when the parameter
GPS_POS1_Z is set incorrectly,
and a flip maneuver is performed.

Fig. 10: Altitude values in different scenarios. The white color
background shows when the ALT_HOLD mode is enabled. The
green color shows the time the FLIP mode is enabled. The red
color shows the time A.ALT_HOLD2 policy is violated.

Policy. ArduPilot documentation explicitly states the conditions to
deploy a parachute: (1) the motors must be armed, (2) the vehicle
must not be in the FLIP or ACRO flight modes, (3) the barometer
must show that the vehicle is not climbing, and (4) the vehicle’s cur-
rent altitude must be above the CHUTE_ALT_MIN parameter value.
PGFUZZ detected policy violations while checking the A.CHUTE1
policy (See Table XII for its MTL) that defines these conditions.

Root Cause. PGFUZZ discovered that ArduPilot only checks the
last condition among the four preconditions when the parachute
is manually released. To illustrate, Figure 9a and Figure 9c depict
the drone’s attitude changes with the released parachute in the
ALT_HOLD mode, showing that the drone performs a stable landing.
However, when PGFUZZ triggers the FLIP mode and deploys the
parachute at the same time (at 22 seconds), it loses pitch controls
and then crashes on the ground at 28 seconds (See Figure 9b and
Figure 9d). The flight control software sends a crash warning mes-
sage to GCSs when it detects landing on the ground with an unstable
attitude. We identify the drone’s crash via the MAVLink message.

Attack. An attacker capable of spoofing/replaying user commands
to trigger the FLIP mode and deploy the parachute simultaneously
is able to cause a crash. We note that though the attacker triggers the
parachute, this action still looks like an innocent command because
the flight control software can automatically deploy the parachute
without the manual command when it determines that the drone
is losing attitude control. To prevent such unsafe state transitions,
ArduPilot requires to check the four conditions before deploying
the parachute. This bug is reported to ArduPilot developers, and
we are waiting for a reply from them.

2) Case Study 2 - Failing to Maintain Proper Altitude after the
Flip Maneuver: Each configuration parameter has its valid range.
However, PGFUZZ discovered that a set of parameters have incor-
rect valid ranges, which causes the vehicle to crash on the ground.

Policy. The ArduPilot documentation states that if the throttle stick

is in the middle position (i.e., maintaining the current altitude),
and the vehicle is in ALT_HOLD mode, it must maintain the current
altitude. We represent this requirement with A.ALT_HOLD2 policy
(See Table XII for its MTL).
Root Cause. PGFUZZ discovered that this requirement is not
correctly implemented if roll axis rate controller parameters
are changed. Figure 10b shows the drone’s altitude decreases
when the vehicle is in the FLIP mode (second 22) under normal
conditions. ArduPilot is able to maintain the current altitude
when switching back to the ALT_HOLD mode (starting from
second 24). However, if the values of the two roll axis rate
controller parameters (ATC_RATE_RLL_FF and ATC_RATE_R_MAX)
are modified, ArduPilot cannot maintain the altitude after a flip
maneuver although the flight mode is the ALT_HOLD and the
throttle stick is in the middle, as shown in Figure 10c. The root
cause is the broad range of accepted parameter values.
Attack. An attacker can exploit this vulnerability by assigning a
small value to the two roll axis rate controller parameters. Here
the attacker can manipulate the configuration parameters by either
overriding them before a flight or changing them after the vehicle
takes off. When the user triggers the FLIP mode, the drone fails
to recover a stable roll angle due to the limited roll angular velocity,
which leads to the failure to stay at the same altitude and eventually
crashing to the ground. We note that the changed roll parameters
do not affect the drone’s attitude control under its normal operation
since they do not require a large roll angle velocity. This prevents
users from noticing the limited roll angle velocity and, consequently,
the attack. To prevent such unstable attitude control, ArduPilot
requires to increase the minimum range values of ATC_RATE_R_-
MAX and ATC_RATE_RLL_FF. This bug is confirmed by ArduPilot
developers, and they proposed to update the parameter ranges.

3) Case Study 3 - Incorrect Altitude Computation after
Acrobatic Flying: Drones measure the same physical state from
multiple sensors to address sensor failures and perform sensor
fusion. For instance, GPS and barometer sensors measure altitude
simultaneously. However, PGFUZZ discovered that ArduPilot
incorrectly computes the altitude when high deviations in GPS
sensor occur. The drone cannot maintain its altitude in the
ALT_HOLD mode due to the incorrect altitude.
Policy. PGFUZZ discovered this policy violation while fuzzing the
A.ALT_HOLD2 policy, which is the same policy discussed in Case
Study 2 (Section VII-C2). While the violated policies are the same,
the input sequence that causes the violation and the violation’s
root cause differs. This is because PGFUZZ first reboots the drone
on the simulator to negate all changed configurations after finding
a policy violation. It then restarts fuzzing to find different bugs
related to the same policy.
Root Cause. PGFUZZ discovered that high deviations in GPS
sensor coupled with incorrectly assigned parameter values
result in the drone not maintaining its altitude in the ALT_HOLD
mode. First, PGFUZZ causes a high deviation in GPS sensor
measurements by assigning a value to the GPS_POS1_Z parameter
and triggering an acrobatic flying activity (e.g., FLIP or ACRO
modes). The high deviation causes ArduPilot to switch the altitude
measurement source from GPS to the barometer. Then, ArduPilot
incorrectly applies the GND_ALT_OFFSET parameter to calculate
the barometric altitude, causing an undesired altitude change, as
shown in Figure 10d. Particularly, ArduPilot sets the altitude to
zero when the vehicle is taking off, although the user assigns a
value to the GND_ALT_OFFSET before take-off. Hence, ArduPilot
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gering Figure 10d and changes the
LAND_SPEED_HIGH parameter.

Fig. 11: Landing on the ground in different scenarios. The green
and red colors have the same meaning with Figure 10.

must not apply the offset to calculate the altitude after take-off.
However, PGFUZZ found that ArduPilot uses the offset, which
prevents the vehicle from staying at the same altitude.

Attack. An attacker can exploit this policy violation and crash
the drone, although the violation itself does not cause a physical
crash. Particularly, the attacker (1) configures the FS_EKF_ACTION
parameter to land the drone on the ground when the measured GPS
values deviate and (2) assigns a large value to the GND_ALT_OFFSET
and LAND_SPEED_HIGH parameters. Then, when a user executes
an acrobatic flying activity (e.g., FLIP mode), it triggers the policy
violation (Figure 10d). When the user executes the acrobatic flying
activity, GPS sensor values deviate. Hence, the drone starts landing
due to the attacker’s configuration on the FS_EKF_ACTION param-
eter. While the drone is landing on the ground, it uses two different
descent speeds: (1) LAND_SPEED_HIGH parameter is the descent
speed when the drone is higher than 10 meters from the ground
and (2) LAND_SPEED parameter is the descent speed when the
drone’s altitude is less than 10 meters. During the attack, the drone
keeps using the LAND_SPEED_HIGH while landing instead of the
LAND_SPEED because of the miscalculated altitude. In other words,
the drone misjudges the current altitude and maintains a fast descent
speed even though the altitude is less than 10 meters. Figure 11a
illustrates the drone’s safe landing under normal conditions, whereas
Figure 11b depicts that the drone hits the ground with 12.86
m/s when it is under attack. The attacker can stealthily conduct
this attack because (1) the parameter changes do not cause any
noticeable difference in the drone’s normal operation, and (2) after
the attacker changes these parameters, the bug is triggered when the
user executes the acrobatic flying. To prevent this bug, ArduPilot
should check all of the altitude values to stay at the same altitude
while the RV is in the ALT_HOLD mode instead of only checking
the previous altitude. We reported the bug to ArduPilot developers.
However, we are still awaiting a reply from them.

4) Case Study 4 - Failing to Trigger the GPS Fail-safe:
PGFUZZ discovered that assigning a negative value to the
COM_POS_FS_DELAY parameter, which represents the time delay
in turning on a GPS fail-safe and setting to specific flying modes
cause PX4 to fail to trigger the GPS fail-safe.

Policy. PX4 documentation states that if time exceeds
COM_POS_FS_DELAY seconds after GPS loss is detected, the
GPS fail-safe must be triggered. We express this requirement
with PX.GPS.FS1 policy (See Table XII for its MTL). We note
that the time constraint of the MTL formula does not include a
constant upper bound (i.e., ♦[0,COM_POS_FS_DELAY+k]) but depends on
a variable k. This is because triggering the GPS fail-safe requires
COM_POS_FS_DELAY time and an additional time delay (k). The
additional delay k is caused by the soft real-time system’s task
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(a) PX4 maintains the ORBIT
flight mode under GPS signal loss.
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Fig. 12: Illustration of failing to trigger the GPS fail-safe in
different scenarios. The red color box represents when the GPS
signals are blocked (30-47 secs).

scheduling. We repeatedly measured the additional time delay k
and noticed its maximum value is less than a second. However, to
conservatively detect a policy violation, we set the upper bound
to the COM_POS_FS_DELAY twice of the maximum delay time.

Root Cause. The violation happens because PX4 developers do not
implement a parameter range check. PX4 v1.7.4 forces COM_POS_-
FS_DELAY parameter to have a value in the valid range. Thereafter,
it checks whether the GPS fail-safe needs to be triggered. However,
we found that the code lines to check the COM_POS_FS_DELAY
parameter are removed by developers in PX4 v1.9 while updating
the fail-safe code snippets. When a user assigns a negative value to
the parameter, it affects the decision to trigger the fail-safe when the
current flight mode is ORBIT or the drone is flying into a location.
Specifically, if the flight mode is not ORBIT or the drone stays at
the same location, PX4 correctly triggers the GPS fail-safe. This
observation makes it difficult for the developers to notice the bug.

PGFUZZ uncovered the bug by assigning a negative value to
the COM_POS_FS_DELAY parameter, changing the current flight
mode to ORBIT and turning off GPS signals. As a result, the drone
stopped the navigation and aimed at staying in the current location
via inertial measurement unit (IMU) sensors (e.g., accelerometers)
instead of turning on the GPS fail-safe. However, accumulated
errors from the IMU caused the drone to randomly float in the air
depending on the wind directions, as shown in Figure 12a.

Attack. An attacker can exploit this policy violation to prevent
the drone from handling scenarios in which the GPS signal is lost,
eventually leading to a physical crash of the drone. Specifically,
the attacker can assign a negative value to the COM_POS_FS_DELAY
parameter to trigger this bug. When the drone passes through an
area where the GPS signal is not available, the drone will fail to
turn on the proper GPS fail-safe, and it will fly to a wrong location,
as shown in Figure 12a and Figure 12b. In our example, the vehicle
deviates from its planned route by up to 20.7 meters in its latitude
and 70.5 meters in its longitude. Such a deviated flight path could
potentially make the vehicle physically crash.

The described attack can be stealthily performed, since the loss
of GPS signal is normal behavior that occurs naturally, especially
in some circumstances, such as when the drone flies in highly
urbanized areas. To prevent this bug, PX4 should restore the
previous valid range check statement. We reported the bug to PX4
developers, and they accepted it.
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Types of bugs
Framework Software

crash
Control

instability
Mis-

implementation
Unimplemented

command
Conventional Fuzzing
Methods [5], [44], [48] 3 7 7 7

AR-SI [36] 7 3 7 7
RVFuzzer [41] 7 3 7 7
MAYDAY [40] 3 3 7 7
Control Invariant [24] 7 3 7 7
Cyber-Physical
inconsistency [23] 7 3 3 7

Fuzzing for CPSs [22] 7 3 7 7
PGFuzz 3 3 3 3

TABLE X: A comparison of PGFUZZ with other fuzzing works.

VIII. RELATED WORK

In comparison to other approaches including traditional fuzzing
methods [5], [44], [48], CPS fuzzing works [21], [22], and control
instability detection works [23], [24], [36], [40], [41] as presented
in Table X, PGFUZZ tests the whole control software by allowing
users to define any functional requirements in the form of MTL
formulas. This enables PGFUZZ to discover additional types of
bugs such as checking for safety conditions (e.g., when a drone
opens the parachute, as explained in Section VII-C1), drone phys-
ical crashes due to parameters’ incorrect ranges (Section VII-C2),
and incorrect altitude calculation (Section VII-C3). We note that
such bugs can only be discovered by PGFUZZ.

Traditional fuzzing methods [5], [44], [48] mainly discovers
memory corruption vulnerabilities (e.g., buffer overflow).
However, PGFUZZ can discover new types of bugs, including
misimplementation, control instability, and unimplemented
commands leading to undesired vehicle states.

Chen et al. [21] aims to detect triggered bugs by checking
if sensor or actuator values go outside specific safe bounds.
Unfortunately, this assumption is not always true in the scenarios
we consider in this paper. In fact, it is possible that a drone is
in a state in which every sensor reports reasonable values, while,
however, being in an unsafe state. For instance, consider a drone
having a vertical speed of 3 m/s. While this value is acceptable under
normal operations, it is unsafe during, for instance, the ALT_HOLD
flight mode. To detect this kind of violations, PGFUZZ uses MTL
policies to capture temporal and causal relations among states of
RVs. This allows PGFUZZ to identify a larger range of bugs.

In addition, there exist approaches designed to find bugs
specifically in RVs [23], [24], [36], [40], [41]. Specifically,
RVFuzzer [41], as detailed in Section VII-B, fuzzes the
configuration parameters and some environment factors (e.g., wind)
to find input validation bugs. MAYDAY [40] localizes bugs in the
source code which lead to unstable attitude/crash. AR-SI [36] uses
autoregressive system identification to detect control instability
bugs. Choi et al. [24] extracts a control invariant model representing
the robotic vehicle’s dynamics and control algorithm. The model
takes the RV’s states and predicts the next states related to attitude
control (i.e., roll, pitch, and yaw angles). If a substantial state
difference is measured between an RV and the model, it assumes
that an undesired state change has occurred. These approaches
detect bugs that cause either unstable attitudes or flight path
changes. For this reason, they are unable to find other types of
bugs, outside of these two categories, such as the bug explained
in Section VII-C4. On the contrary, PGFUZZ can discover a larger
variety of bugs affecting RVs, since it can detect violations of any
property that can be expressed with an appropriate MTL formula.

Choi et al. [23] also proposed a technique to find bugs in

safety checks of drones. This approach mutates environment
conditions (e.g., wind and mass of physical objects) to verify
whether code snippets perform sanity checks for detecting a set
of safety-critical cases. They mainly use the model derived in
their previous work [24] as a bug oracle. In contrast, PGFUZZ
tests the whole control software by allowing users to define any
functional requirements in the form of MTL formulas. This enables
PGFUZZ to discover additional types of bugs such as the lack of
checking for safety conditions (when, for instance, a drone opens
the parachute, as explained in Section VII-C1), drone physical
crashes due to parameters’ incorrect ranges (Section VII-C2), and
incorrect altitude calculation (Section VII-C3).

Formal methods are also used to discover bugs in RVs [30],
[31]. However, their models often suffer from state explosion
problems, which limits them from porting to complex systems such
as RVs. There have also been efforts to build formal verification
to detect safety issues via machine learning techniques [2], [3].
However, they focus on malicious sensor/actuator faults and
spoofing attacks instead of RV software bugs.

IX. LIMITATIONS AND DISCUSSION

Imperfection of RV Simulators. We use Software-in-the-Loop
(SITL) as our testing environment. Imperfect simulations could
cause two issues. First, if simulators incorrectly simulate the
vehicle’s states and/or hardware, PGFUZZ will identify false-
positive policy violations. However, we confirmed that all policy
violations found by PGFUZZ could be reproduced on a real
vehicle. We used a 3DR IRIS + UAV platform equipped with
the Pixhawk 1 flight management unit board in our experiments.
Second, if the simulators do not support specific hardware
(e.g., RFD 900 radio modem [14]), PGFUZZ cannot find bugs
in those hardware modules. To address this, PGFUZZ can be
integrated into Hardware-in-the-loop (HIL) simulation [11], [55] or
Simulation-In-Hardware (SIH) [54] where firmware is run on real
flight controller hardware. Yet, the HIL and SIH require numerous
hardware devices to vet all hardware configurations.

Monitoring Real-time Properties of Temporal Logic. Since
PGFUZZ checks policies at run-time during a simulation, at time
point t, only the data traces for 1,...,t are available to check the
policies. Therefore, MTL policies with unbounded future operators
cannot be checked at run-time. Following the online monitoring
systems [16], [27], we define the policies with a subclass of MTL
that considers unbounded past and bounded future. To illustrate,
consider a policy that states the altitude of a vehicle must eventually
exceed 10 meters, defined as �(ALT>10). This policy cannot be
checked at time t since it depends on the drone’s future states not
yet available to PGFUZZ. However, when this policy is restricted
with a bounded future such as �[0,5](ALT>10) (the altitude must
eventually exceed 10 meters within 5 seconds), the policy can be
checked at time t+5.

Porting PGFUZZ to other RVs. Users can port PGFUZZ to
other types of RV software by following six steps. These steps are
required for policy identification, finding the maximum number
of bugs, and minimizing the fuzzing time: (1) create MTL (or LTL)
policies for the RV, (2) identify new states that are not included
in the states list defined by PGFUZZ, (3) update the synonym table
(See Figure 5), (4) map MTL formula terms to variables in the
source code (See Figure 4), (5) verify and update policy violation
predicates according to the new MTL formulas (See Figure 13),
and (6) exclude self-sabotaging inputs leading to false-positive
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policy violations (See Appendix C). The porting effort depends on
how similar the two platforms are. We believe that such a workload
is not a significant burden for developers or knowledgeable users.
For example, when porting PGFUZZ from ArduPilot to PX4, the
total porting effort took 6.3 hours. This includes modifying 54 LoC
in the Pre-Processing and 94 LoC in the mutation engine to adapt
to differences in MAVLink protocol. The required time for the
manual porting effort is detailed in Appendix D.

X. CONCLUSIONS

We introduce PGFUZZ, a policy-guided fuzzing framework,
which leverages policies represented by temporal logic with
timing constraints to find bugs in robotic vehicle control software.
PGFUZZ addresses the unique challenges in fuzzing RVs by (1)
reducing the large input space through static and dynamic analysis,
and (2) mutating fuzzing inputs to minimize a distance metric that
measures “how close” the RV’s current state is to a policy violation.
We evaluated PGFUZZ on three popular flight control software
packages, ArduPilot, PX4, and Paparazzi. PGFUZZ discovered 156
previously unknown bugs, and 128 of the bugs can only be discov-
ered with PGFUZZ. We reported the bugs to the software developers
of flight control software, and they acknowledged 106 of these bugs.
Future work will expand our analysis to support more safety-critical
systems and study the safety and security requirements engineering
process to discover more complex policies.
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APPENDIX

A. List of Terms

Table XI shows the physical states extracted from policies
presented in Table XII. We also include a list of InputP and
InputE in the list of terms.

B. Automated Predicate Generation

Users who desire to port PGFUZZ in other RV software
need to conduct six steps to find the maximum number of bugs
and minimize the fuzzing time as explained Section IX (Porting
PGFUZZ to other RVs).

To reduce users’ manual effort, we automate the fifth step
(i.e., creating code snippets to calculate propositional and global
distances). We call this step predicate generator. The predicate
generator first parses and verifies MTL formulas based on the
BNF definition in Section V-A1. We implemented the analyzer

ID Type State Description
S1 Position latitude, longitude, altitude (x,y,z) location of the vehicle
S2 Attitude roll, pitch, yaw, roll speed,

pitch speed, yaw speed,
reference roll, reference
pitch, reference yaw

Measured and desired attitude

S3 Operation air speed, ground speed, throt-
tle, climb rate, reference air
speed, flight mode, parachute

Physical movement and operation mode

S4 RC inputs RC 1 - 4 Radio channel inputs from users
S5 System system clock, flight status,

mission, pre-arm checking
System general info. such as the vehicle
is on the ground or free falling

S6 Sensor gyroscope, accelerometer,
magnetometer, barometer,
GPS

Sensor condition

TABLE XI: The identified physical states. S1-S5 are obtained from
MAVLink and S6 is by parsing the ACK messages from the vehicle.

^

∨=

on

if chute == on:

P1 = 1

else:

P1 = -1

if Armed != true:

P2 = 1

else:

P2 = -1

if Mode == FLIP || Mode == ACRO :

P3 = 1

else:

P3 = -1

P4 = (ALT_c – ALT_p) / ALT_c

P5 = (CHUTE_ALT_MIN – ALT_c) / CHUTE

_ALT_MIN

if (-1 * MIN (P1, MAX(P2, P3, P4, P5))) < 0:

// policy violation occurs

chute
∨ ∨

≠

Armed true

=

Mode FLIP/

ACRO

>

ALT_c ALT_p

<

ALT_c CHUTE_

ALT_MIN

P1 = P2 = P3 = -1

if chute == on:

P1 = 1

if Armed != true:

P2 = 1

if Mode == FLIP || Mode == ACRO :

P3 = 1

P4 = (ALT_c – ALT_p) / ALT_c

P5 = (CHUTE_ALT_MIN – ALT_c) / CHUTE

_ALT_MIN

if (-1 * MIN (P1, MAX(P2, P3, P4, P5))) < 0:

// policy violation occurs

Fig. 13: Illustration of A.CHUTE1 policy’s binary expression tree. c
and p denote current time (t) and previous time (t−1). A python
code represents propositional distances (P1−P5) and a global
distance derived by P1−P5.

via PyParsing library [57]. Second, to arithmetically calculate the
distances in the source code, it converts the verified MTL formula
in the always form into an MTL formula in the not eventually
form as explained in Section V-B3. Third, we create the binary
expression tree based on the converted MTL formula (as shown in
Figure 13). Then, we traverse the nodes of the tree to automatically
generate the code snippets that calculate the distances and check
a policy violation. We created the code snippets of propositional
and global distances, as explained in Section V-B3.

C. Handling False Positives

We exclude the following Inputset which leads to false positive
policy violations: (1) InputP influencing hardware configurations
(e.g., device IDs), and (2) InputC to turn off engines.

D. Required Time for Porting Effort

When users port PGFUZZ to other RV software, some manual
tasks are required as presented in Section IX (Porting PGFUZZ
to other RVs). We spent a total of 23.4 hours on the manual effort.
Specifically, we deployed PGFUZZ in the order of ArduPilot,
PX4, and Paparazzi, and the manual effort took 13.5, 6.3, and 3.6
hours, respectively. We spent less time on PX4 and Paparazzi than
ArduPilot because the flight control programs have similar or same
flight modes, synonyms, and self-sabotaging inputs.

E. Policy Descriptions

To evaluate PGFUZZ, we use the following 56 policies,
formally expressed with MTL formulas in Table XII.
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ID Policy Description Templ. MTL notation

A.RTL1
If the current altitude is less than RTL_ALT, then altitude must be increased until the altitude is
greater or equal to the RTL_ALT. T3 �{(ALTt<RTL_ALT)∧(Modet=RTL)→(ALTt−1 <ALTt)}

A.RTL2
If the current altitude is greater or equal to RTL_ALT, current flight mode is RTL, and the
current vehicle is not at home position, then the vehicle must move to the home position
while maintaining the current altitude.

T3
� {(Modet=RTL) ∧ (ALTt≥RTL_ALT) ∧ (Post 6=
homeposition)→(Post−1 6=Post)∧(ALTt−1=ALTt)}

A.RTL3
If current altitude is greater or equal to RTL_ALT and current position is the same as home
position, then flight mode must be LAND. T3 �{(Modet=RTL)∧(ALTt≥RTL_ALT)∧(Post=homeposition)→(Modet=LAND)}

A.RTL4
If current flight mode is LAND and the vehicle touches the ground, then the vehicle must
disarm motors. T3 �{(Modet=LAND)∧(ALTt=GroundALT)→(Disarm=on)}

A.FLIP1
If and only if roll is less than 45 degree, throttle is greater or equal to 1,500, altitude is more
than 10 meters, and the current flight mode is one of ACRO and ALT_HOLD, then the flight
mode can be changed to FLIP.

T2
� {(Modet = FLIP) → (Modet−1=ACRO/ALT_HOLD) ∧ ¬(Rollt > 45) ∨ (Throttle ≤
1,500)∨(ALTt<10)}

A.FLIP2
If the current flight mode is FLIP and roll is between -90 and 45 degree, then rolling right at
400 degree per second. T3 �{(Modet=FLIP)∧(−90≤Rollt≤45)→(Rollrate=400)∧(RollDirection=right)}

A.FLIP3
After the vehicle finishes A.FLIP2, the vehicle must recover the original attitude (i.e., roll,
pitch, and yaw) within k seconds. T1 & T3

� {(Modet = FLIP3) → (Rollt = ♦[0,K]RollOriginal) ∧ (Pitcht =
♦[0,K]PitchOriginal)∧(Yawt=♦[0,K]YawOriginal)}

A.FLIPGeneral
The vehicle should complete the rolling (A.FLIP2) within 2.5 seconds and must return to the
original flight mode. T1 �{(Modet=FLIP1)→(♦[0,2.5]Modet=FLIP3)}

A.ALT_HOLD1 If the altitude source is the barometer, the vehicle must follow the altitude computed by this
source, rather than the GPS. T3 �{(ALTsrc=Baro)→(ALTt=ALTBaro)∧(ALTt 6=ALTGPS)}

A.ALT_HOLD2 If the throttle stick is in the middle (i.e., 1,500) the vehicle must maintain the current altitude. T3 �{(Modet=ALT_HOLD)∧(Throttlet=1,500)→(ALTt=ALTt−1)}

A.CIRCLE1 Pitch stick up must reduce the radius until it reaches zero. T3
�{(Modet=CIRCLE)∧(RCpitch<1,500)∧(Circle_radiust>0)→ (Circle_radiust<
Circle_radiust−1)}

A.CIRCLE2 Pitch stick down must increase the radius. T3 �{(Modet=CIRCLE)∧(RCpitch>1,500)→(Circle_radiust>Circle_radiust−1)}

A.CIRCLE3 Roll stick right (think clockwise) must increase the speed while moving clockwise. T3
� {(Modet = CIRCLE) ∧ (RCroll>1,500) ∧ (Circle_directiont =
clockwise)→(Circle_speedt>Circle_speedt−1)}

A.CIRCLE4 Roll stick right (think clockwise) must decrease the speed while moving counterclockwise. T3
� {(Modet = CIRCLE) ∧ (RCroll>1,500) ∧ (Circle_directiont =
counterclockwise)→(Circle_speedt<Circle_speedt−1)}

A.CIRCLE5
Roll stick left (think counterclockwise) must increase the speed while moving
counterclockwise. T3

� {(Modet = CIRCLE) ∧ (RCroll<1,500) ∧ (Circle_directiont =
counterclockwise)→(Circle_speedt>Circle_speedt−1)}

A.CIRCLE6 Roll stick left (think counterclockwise) must decrease the speed while moving clockwise. T3
� {(Modet = CIRCLE) ∧ (RCroll<1,500) ∧ (Circle_directiont =
clockwise)→(Circle_speedt<Circle_speedt−1)}

A.CIRCLE7
The users do not have any control over the roll, pitch, and yaw but can change the altitude with
the throttle stick. T3

� {(Modet = CIRCLE)→ (RC_rollt/RC_pitcht/RC_yawt =
RC_rollt−1/RC_pitcht−1/RC_yawt−1) ∧ {(RC_throttlet ≤ RC_throttlet−1) ∨
(RC_throttlet≥RC_throttlet−1)}}

A.LAND1
Above 10 meters the vehicle must descend at the rate specified in the LAND_SPEED_HIGH
parameter T3 �{(Modet=LAND)∧(ALTt≥10)∧→(Speed_verticalt=LAND_SPEED_HIGH)}

A.LAND2 Below 10 meters the vehicle must descend at the rate specified in the LAND_SPEED parameter. T3 �{(Modet=LAND)∧(ALTt<10)∧→(Speed_verticalt=LAND_SPEED)}

A.AUTO1
The pilot’s roll, pitch and throttle inputs must be ignored but the yaw can be overridden with
the yaw stick. T3

� {(Modet = AUTO)→ (RC_rollt/RC_pitcht/RC_throttlet =
RC_rollt−1/RC_pitcht−1/RC_throttlet−1)∧{(RC_yawt ≤ RC_yawt−1) ∨ (RC_yawt ≥
RC_yawt−1)}}

A.BRAKE1 When the vehicle is in BRAKE mode, it must stop within k seconds T1 �{(Modet=BRAKE)→(♦[0,k]Post=Post−1)}

A.DRIFT1
If the vehicle loses GPS signals in flight while in DRIFT mode, the vehicle must either LAND
or enter ALT_HOLD mode based on FS_EKF_ACTION parameter. T1 �{(GPSfail=on)∧(Modet=DRIFT)→(♦[0,k]Modet=FS_EKF_ACTION)}

A.LOITER1 The vehicle must maintain a constant location, heading, and altitude. T3 �{(Modet=LOITER)→(Post=Post−1∧Yawt=Yawt−1∧ALTt=ALTt−1)}

A.GUIDED1 If there is no more way point, the vehicle must stay at the same location, heading, and altitude. T3
�{(Modet = GUIDED)∧(Waypoint= /0)→ (Post = Post−1)∧(Yawt = Yawt−1)∧(ALTt =
ALTt−1)}

A.SPORT1 In SPORT mode, the vehicle must climb as indicated by the PILOT_SPEED_UP parameter. T3 �{(Modet=SPORT)→(Speed_verticalt=PILOT_SPEED_UP)}

A.RC.FS1
If and only if the vehicle is armed in ACRO mode and the throttle input is less than the
minimum (FS_THR_VALUE parameter), the vehicle must immediately disarm. T3 �{(Modet=ACRO)∧(Throttlet<FS_THR_VALUE)→(Disarm=on)}

A.RC.FS2
If the throttle input is less than FS_THR_VALUE parameter, it must change the current mode to
the RC fail-safe mode. T3 �{(Throttlet<FS_THR_VALUE)→(RCfail=on)}

A.CHUTE1

Deploying a parachute requires following conditions: (1) the motors must be armed, (2)
the vehicle must not be in the FLIP or ACRO flight modes, (3) the barometer must show
that the vehicle is not climbing, and (4) the vehicle’s current altitude must be above the
CHUTE_ALT_MIN parameter value.

T2
� {(Parachute=on) → (Armed=true) ∧ (Modet 6= FLIP/ACRO) ∧ (ALTt ≤
ALTt−1)∧(ALTt>CHUTE_ALT_MIN)}

A.GPS.FS1
When the number of detected GPS satellites is less than four, the vehicle must trigger the GPS
fail-safe mode. T3 �{(GPSfail=on)→(GPScount<4)}

A.GPS.FS2
When the GPS fail-safe mode is triggered and there is a secondary altitude sensor, the vehicle
must change the current primary altitude source to the secondary sensor. T3 �{(GPSfail=on)∧(Baro=on)→(ALTsrc=Baro)}

PX.RTL1
If the current altitude is less than RTL_RETURN_ALT, then the altitude must be increased until
the altitude is greater or equal to the RTL_RETURN_ALT. T3 �{(ALTt<RTL_RETURN_ALT)∧(Modet=RTL)→(ALTt−1 <ALTt)}

PX.RTL2
If the current altitude is greater or equal to RTL_RETURN_ALT, current flight mode is RTL,
and the current vehicle is not home position, then the vehicle must move to the home
position while maintaining the current altitude.

T3
� {(Modet=RTL) ∧ (ALTt≥RTL_RETURN_ALT) ∧ (Post 6=
homeposition)→(Post−1 6=Post)∧(ALTt−1=ALTt)}

PX.RTL3
If current altitude is greater or equal to RTL_RETURN_ALT and current position is the same as
home position, then flight mode must be LAND. T3 �{(Modet=RTL)∧(ALTt≥RTL_RETURN_ALT)∧(Post=homeposition)→(Modet=LAND)}

PX.RTL4 If RTL_LAND_DELAY parameter has -1, the vehicle must hover at RTL_DESCEND_ALT. T3 �{(Modet=RTL)∧(RTL_DESCEND_ALT=−1)→(Post=Post−1)∧(ALTt=ALTt−1)}

PX.RTL5 It is the same as A.RTL4 T3 It is the same as A.RTL4.

PX.ORBIT1−4 It is the same as A.CIRCLE1−4. T3 It is the same as A.CIRCLE1−4.

PX.ORBIT5 The maximum radius must be 100 meters. T3 �{(Modet=ORBIT)→(Circle_radiust<100)}

PX.ORBIT6 The maximum acceleration must be limited to 2m/s2. T3 �{(Modet=ORBIT)→(Circle_speedt<2m/s2)}

PX.LAND1 Descending speed must be the same as MPC_LAND_SPEED parameter. T3 �{(Modet=LAND)→(Speed_verticalt=MPC_LAND_SPEED)}

PX.ALTITUDE1 It is the same as A.ALT_HOLD2. T3 It is the same as A.ALT_HOLD2.

PX.POSITION1 The vehicle must maintain a constant position. T3 �{(Modet=POSITION)→(Post=Post−1)}

PX.HOLD1 It is the same as A.LOITER1. T3 It is the same as A.LOITER1.

PX.HOLD2
If MIS_LTRMIN_ALT is not -1 and current altitude is less than the parameter value, then the
vehicle must ascend to this altitude. T3 �{(Modet=HOLD)∧(MIS_LTRMIN_ALT 6=−1)→(ALTt>ALTt−1)}

PX.TAKEOFF1
When the vehicle conducts a taking off command, the target altitude must be the
MIS_TAKEOFF_ALT parameter value. T3 �{(Commandt=takeoff)→(ALTt≤MIS_TAKEOFF_ALT)}

PX.TAKEOFF2
When the vehicle conducts a taking off command, the speed of ascent must be the
MPC_TKO_SPEED parameter value. T3 �{(Commandt=takeoff)→(Speed_verticalt=MPC_TKO_SPEED)}

PX.GPS.FS1
If time exceeds COM_POS_FS_DELAY seconds after GPS loss is detected, the GPS fail-safe
must be triggered. T1 �{(GPSloss=on)→(♦[0,COM_POS_FS_DELAY+k]GPSfail=on)}

PX.GPS.FS2
If the GPS fail-safe is triggered and a remote controller is available, the flight mode must be
changed to ALTITUDE mode. T3 �{(GPSfail=on)∧(RCt =on)→(Modet=ALTITUDE)}

PX.GPS.FS3
If the GPS fail-safe is triggered and a remote controller is not available, the flight mode must
be changed to LAND mode. T3 �{(GPSfail=on)∧(RCt =o f f )→(Modet=LAND)}

PP.Hover The vehicle must be staying in a constant position and heading. T3 �{(Modet=Hover)→(Post=Post−1)∧(Yawt=Yawt−1)}

PP.HoverZ It is the same as A.ALT_HOLD2. T3 It is the same as A.ALT_HOLD2.

PP.HoverC It is the same as A.LOITER1. T3 It is the same as A.LOITER1.

PP.TAKEOFF1
When the vehicle conducts a taking off command, the target altitude must be 5 more meters
than home altitude. T3 �{(Commandt=takeoff)→(ALTt≤HOME_ALT+5)}

PP.HOME1 The vehicle must descend while it moves to home position. T3 �{(Modet=HOME)∧(Landt 6=true)→(ALTt 6=ALTt−1)∧(Post 6=Post−1)}

TABLE XII: Policies extracted from the docs and comments on source code of ArduPilot (A) [10], PX4 (PX) [52], and Paparazzi (PP) [32].
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