
Towards Improving Container Security by
Preventing Runtime Escapes

Michael Reeves∗¶, Dave (Jing) Tian†, Antonio Bianchi†, Z. Berkay Celik†
∗ Sandia National Laboratories, mreeve@sandia.gov

†Purdue University, {daveti, antoniob, zcelik}@purdue.edu

Abstract—Container escapes enable the adversary to execute
code on the host from inside an isolated container. These high
severity escape vulnerabilities originate from three sources: (1)
container profile misconfigurations, (2) Linux kernel bugs, and
(3) container runtime vulnerabilities. While the first two cases
have been studied in the literature, no works have investigated the
impact of container runtime vulnerabilities. In this paper, to fill
this gap, we study 59 CVEs for 11 different container runtimes.
As a result of our study, we found that five of the 11 runtimes had
nine publicly available PoC container escape exploits covering
13 CVEs. Our further analysis revealed all nine exploits are the
result of a host component leaked into the container. We apply
a user namespace container defense to prevent the adversary
from leveraging leaked host components and demonstrate that
the defense stops seven of the nine container escape exploits.

Index Terms—containers, security study, vulnerability analysis

I. INTRODUCTION

Since containers are lightweight OS-level virtualization, they
enable organizations to scale and develop software solutions
in the cloud-native era. Containers accomplish this by defining
a preconfigured environment enabling developers to focus
on writing applications without worrying about dependencies
or complicated software setups. In addition, containers are
designed to securely run untrusted (unverified and possibly ma-
licious code) code. To constrain this untrusted code, containers
leverage kernel isolation and kernel security mechanisms to
prevent application vulnerabilities from impacting container
hosts. For example, if a web server running in a container
has a Remote Code Execution (RCE) vulnerability, exploiting
the vulnerability will only gain code execution inside the
container and not on the host. However, there exist high severity
vulnerabilities that can be used to defeat the isolation and
security mechanisms constraining the container. Exploits that
target these vulnerabilities are known as “container escapes”
since an adversary is able to execute code on the host from
inside the container.

There are three main types of vulnerabilities that adversaries
exploit to escape a container: (1) Profile misconfiguration,
(2) Linux kernel bugs, and (3) Container runtime bugs. The
profile misconfiguration vulnerabilities occur when the isolation
and security mechanisms of the containers are not properly
secured or are dropped entirely to ease the deployment process
(e.g., running a privileged Docker container [1]). Exploiting this
vulnerability enables the adversary to escape easily and execute
code on the host since a container lacking constraints has the

¶All work was conducted during the author’s MSc at Purdue University.

same host access as a normal system process [2]. Linux kernel
bugs occur when the adversary can leverage a kernel exploit
from inside the container to execute arbitrary code in the kernel,
disable the container constraints, and escape the container [3].
Lastly, container runtime bugs occur when the adversary is
able to exploit a vulnerability in the container runtime itself to
escape. For example, CVE-2019-5736 exploits an error in the
runC container runtime’s mishandling of /proc file descriptors to
overwrite the runC binary on the host. When the host attempts
to start a new container, the malicious code in the new runtime
binary is executed, and the adversary successfully executes code
on the host. Thus, a successful “container escape” is executed
(See Section IV-D for a full description). There are no prior
works that have explored container runtime vulnerabilities,
but misconfiguration and kernel escapes have been studied
previously [4]–[6].

Contributions. In this paper, we make three contributions.
First, we conducted a security study over 11 container run-
times and their corresponding 59 CVEs to understand why
container runtime vulnerabilities occur and what impact the
corresponding exploits have on the container host. Since CVEs
do not include technical details but only a short paragraph
description of the vulnerability, we determined a working Proof
of Concept (PoC) exploit for a CVE is required to fully analyze
the impact of the CVE on the container host. After querying
publicly available search services and repositories, we found
only 28 CVEs that have PoC exploits. To analyze the cause and
effect of each CVE’s PoC exploit, we designed a framework to
analyze each PoC exploit according to its “steps”, the high-level
commands executed by the adversary.

Second, we created a seven-class taxonomy of the 28 CVEs
and determined the underlying cause of container escapes.
To create the taxonomy, we categorized the 28 CVEs based
on the cause and impact of each vulnerability’s exploit. After
completing the taxonomy of the 28 CVEs, we found the largest
category, CVEs with PoC exploits leading to container escapes,
comprised 46% or 13 of the 28 CVEs. These 13 CVEs had
nine associated PoC exploits: seven PoC exploits covering one
CVE and two covering three separate CVEs. After further
investigation of the nine PoC escape exploits, we found the
cause of these container escapes is a host component exposed
in the container via the vulnerability.

Third, leveraging the insight gained from the security study,
we deployed a defense to prevent adversaries from utilizing
the host components leaked into a container. To implement
the defense, we applied the user namespace kernel feature to

1

map the container’s root user as a regular user on the container
host. As each host component is owned by a user on the host,
the container should not be able to access any host component.
Applying this defense to the nine escape exploits, seven escapes
are stopped.

II. BACKGROUND

A. Container Isolation Mechanisms

The Linux kernel provides two isolation mechanisms for
processes: (1) Namespaces, an abstraction layer on each global
system resource where processes within a given namespace
appear to have their own unique instance of that resource, and
(2) Cgroups, which limit the consumption of system resources
by grouping processes into “control” groups.
Namespaces. Namespaces (NS) confine processes into groups
to limit access to global system resources (e.g., the container
namespace should not have the same access to network
interfaces as the host). There are currently eight namespaces as
defined by the Linux man page [7]. They isolate different
aspects of a process. Specifically, they isolate a process’:
Cgroups, Inter-process Communication (IPC) objects, network
stack, mount points, Process ID (PID), time data, user and
group IDs, and host and domain name.

For example, when a container process is put into its own
PID namespace, it can only see processes that also share its
PID namespace (i.e., the processes running in that container).
Figure 1 shows how PID namespaces can be used to isolate the
processes of separate containers by assigning each container a
unique PID namespace. The container with host PID 10040
(designated by the runC process 10040) which spawns in PID
NS 1 cannot see the init process (or any other process) of
the container with host PID 11040 spawned in PID NS 2. In
addition, both containers in PID NS 1 or PID NS 2 cannot see
any processes in the original host namespace.

As another example, the user namespace isolates the con-
tainer from the host by mapping the root ID of the container to
a regular user on the host. This can prevent a malicious process
that gains root within the container from executing with root
permissions on the host. Applying this user namespace to a
malicious container would prevent the runC CVE-2019-5736
(as discussed in the Introduction) from executing. We discuss
the user namespace defense in further detail in Section V.
Cgroups. Cgroups are used to limit each process’s usage of
system resources. Each cgroup defines limits for specific system
resources, and upon full consumption of system resources,
all other processes in the same group are prevented from
accessing more resources [8]. For containers, the three main
cgroups are CPU, memory, and I/O, limiting the number of
CPUs, amount of memory, and input/output operations on block
devices, respectively. Container runtimes each set these cgroups
using their internal methods. For example, Docker enables a
user to specify in a container runtime configuration the limits
for CPU and memory usage [9].

B. Container Security Mechanisms

The Linux kernel provides three security mechanisms to
secure the host against malicious execution in containers:

PID NS 1

HOST PID NS Init (PID: 1)

Network Man (PID: 700)

/bin/bash (PID: 4200)

/bin/bash
(PID: 100)

Systemd (PID: 1000)

containerd (PID: 3100)

Init
(PID: 1)

Runc
(PID: 10040)

Runc
(PID: 11040)

Init
(PID: 10050)

/bin/bash
(PID: 10100)

PID NS 2

/bin/bash
(PID: 100)

Init
(PID: 1)

Init
(PID: 11050)

/bin/bash
(PID: 11100)

Fig. 1 Visualization of PID namespaces. Each new namespace has its own
hierarchy of PIDs and cannot see the other PIDs in other PID namespaces.

(1) Mandatory Access Control (MAC), (2) Seccomp, and (3)
Capabilities. These are the main protections the container host
can use to defend itself from attacks originating in containers.
MAC. MAC policy frameworks are implemented as Linux
Security Modules (LSM) [10]. If an action is permitted by
all rules in the policy framework, it is allowed; otherwise,
the action is stopped. Thus, the security of the system is
reliant on the proper building of the rules and the reliability
of the framework. Policy frameworks like SELinux [11] and
Apparmor [12] define in-depth rules deeply embedded in
the kernel as LSMs and only permit actions defined by the
configured policy. Yet, if the policy is not clearly defined, or
there are bugs in the policy modules themselves, adversaries
can disable the MAC frameworks or bypass them entirely
through flaws in policy logic. These frameworks are non-trivial
to implement properly on any highly modular system.
Seccomp. Seccomp filters enable the kernel to firewall system
calls for any process. Each process is assigned various seccomp
settings that can be either very complicated or as simple as
a block/allow list of enabled/disabled system calls [13]. For
example, a simple list of allowed or denied system calls can
be defined in LinuX Containers (LXC [14]), and Docker sets
a default seccomp profile of the allowed system calls for each
container when one is not provided in the configuration [15].
Capabilities. In modern Linux versions, capabilities (in ad-
dition to the traditional user-based permission system) can
constrain what users can do. Specifically, they separate root
permissions into 38 separate units and create a more fine-
grained permission model for the Linux kernel [16]. For
example, CAP NET ADMIN gives a process the permissions
to edit all levels of the network stack, including the system
firewall. To isolate containers properly, the capabilities assigned
to the container must minimize the allowed functionality.

2

C. Least Privilege

Used together, container isolation and security mechanisms
enable an effective Linux administrator to enforce the principle
of least privilege over container applications. The least privilege
ensures that each entity in a system is granted the minimum
system resources and authorizations that the entity needs to
perform its function [17]. If least privilege was applied to
each container, all container applications would run as a
unique low-privileged user by being: constrained with low
CPU consumption in cgroups, limited by unique resource
identifiers with namespaces, monitored and controlled through
mandatory access control, prevented from running insecure
system calls by seccomp, and inhibited with the smallest
number of capabilities. In practice, these restrictions are not
used optimally; for instance, 58% of containers still run as the
default root user [18].

D. Container Architectures

This section discusses how containers are created and exe-
cuted by exploring how an open container initiative (OCI [19])
compliant container is created, using the Docker container
ecosystem as a case study. Since containers are constrained
processes executed on the container host, understanding how
containers are created and executed will aid in understanding
exploits which attack container runtime vulnerabilities. For the
most part, container runtimes follow the OCI specification, ex-
cept LXC, which uses wrappers to enable inter-operability with
the specification [20]. This organization defines a specification
of requirements for container runtimes and container images
to create an industry-standard container [21].

The default runtime for the specification is runC [22],
which performs the initialization of the container process.
runC initializes an OCI compliant image, and executes the
functionality defined by the OCI image’s configuration file.
While runC executes the container, containerd [23] focuses on
managing all the metadata and image files for the container.
Hence containerd draws its name from being a “container
daemon”. So containerd organizes and gathers all required
container metadata to build and execute an OCI container image.
Keeping these facts in mind, when a user runs the command
“docker run ubuntu” to execute an Ubuntu container, this
sends a request to the Docker engine. The Docker engine
coordinates with Dockerhub [24] to download all required
image information. Then, this data is processed, stored, and
sorted by containerd, which builds out an OCI image. Next,
containerd starts a shim to handle setting up the new container
to be executed by runC. Lastly, runC executes the OCI image
as a container process. The encapsulation of various container
responsibilities enables developers to focus on securing each
container component by its specific responsibilities. In this
case, all the runtimes investigated replace runC as the process
to execute the container.

III. THREAT MODEL

We assume an administrator operates a Linux-based container
host where each container runs a specific application. For
example, this may be a micro-service type environment hosting

TABLE I CVE vulnerabilities for each runtime from 2016 to March 2021.
The PoC number designates how many of the CVEs had publicly available
proof of concepts.

Runtime Critical High Med Low

LXC [31] 1 (1 PoC) 3 (0 PoC) 0 (0 PoC) 2 (2 PoC)
Docker [32] 1 (1 PoC) 11(5 PoC) 7 (1 PoC) 0 (0 PoC)

runC [22] 0 (0 PoC) 4 (3 PoC) 0 (1 PoC) 0 (0 PoC)
CRI-O [33] 0 (0 PoC) 1 (0 PoC) 1 (1 PoC) 0 (0 PoC)

Singularity [34] 1 (0 PoC) 8 (3 PoC) 1 (0 PoC) 0 (0 PoC)
gVisor [35] 1 (1 PoC) 0 (0 PoC) 2 (1 PoC) 0 (0 PoC)

rkt [36] 0 (0 PoC) 3 (3 PoC) 0 (0 PoC) 0 (0 PoC)
crun [37] 0 (0 PoC) 1 (0 PoC) 0 (0 PoC) 0 (0 PoC)

Podman [38] 0 (0 PoC) 1 (0 PoC) 2 (0 PoC) 0 (0 PoC)
containerd [23] 0 (0 PoC) 1 (0 PoC) 2 (1 PoC) 0 (0 PoC)

Kata [39] 0 (0 PoC) 3 (3 PoC) 2 (1 PoC) 0 (0 PoC)

Total 4 (3 PoC) 36 (17 PoC) 17 (6 PoC) 2 (2 PoC)

external corporate services (e.g., a container is responsible for
hosting a web server and another a database) or a Container
as a Service (CaaS) host providing container instances for
clients [25], [24]. All hardware is part of the trusted computing
base (TCB), as well as all the software in the Linux kernel.
The administrator controls all software on the container host
and secures the containers so that adversaries cannot take
advantage of misconfiguration vulnerabilities or Linux kernel
bugs. For the adversary, we assume they have gained code
execution inside the containers the administrator hosts. This
could happen in one of three ways: (1) there is a remote code
execution vulnerability present in a container application with
a high probability of exploitability [26], (2) the service allows
the adversary to execute code on the container as a user in the
environment (e.g., CaaS), and (3) the administrator, by mistake,
downloads and executes a malicious container image. The
adversary aims to gain code execution on the container host
by exploiting a vulnerability available in the container runtime
and successfully escaping the container. The adversary can
exploit any vulnerability in the container’s runtime accessible
within the container. Side-channel and DoS attacks do not
impact the integrity of the container host (i.e., they do not
enable adversary command execution outside the container),
and therefore are out of scope [27]–[30].

IV. CONTAINER RUNTIME SECURITY STUDY

In this section, we detail our container security study. First,
we describe the collection process of the container runtimes
list and their corresponding CVEs. Then, we motivate the need
to focus on runtime vulnerabilities with PoC exploits in an
initial analysis. To classify each CVE, we create a seven-class
taxonomy to understand the cause and impact of each CVE’s
exploit based on high-level adversary commands called “steps”.
We find the majority of PoC exploits enable container escapes,
and further investigate these nine PoC exploits covering 11
container runtimes. Our study reveals the underlying cause
of container escapes exploiting container runtimes: the host
component exposed in the container.

A. Data Collection Overview

Container Runtimes. To analyze as many runtimes as possible,
we gathered a list of popular runtimes from the recent literature
and searching Google with queries for popular container
runtimes (e.g., “popular container runtimes”). Table I presents

3

the list of container runtimes along with respective links to
their code repositories.

CVE Data Sources. The NIST National Vulnerability Database
(NVD) [40] publishes all the data regarding common vulnera-
bility enumerations (CVE) [41] that are submitted to MITRE.
For this study, we investigated all CVEs published from January
1st, 2016 to March 2021. 2016 was chosen since this was one
year after the foundation of the OCI, while March 2021 was
when the security study was conducted. To parse this data
effectively, we leveraged nvdtools [42], an open-source tool
that downloads and queries the published NVD JSON data
from the NVD public API. The NVD data is designed to be
queried via common platform enumeration IDs (CPE), which
to quote NIST is “a structured naming scheme for information
technology systems, software, and packages” [43]. Thus, we
fed the list of runtimes in CPEID format yielding 59 CVEs.

Initial Analysis. The distribution of these CVEs is displayed in
Table I. The Critical, High, Medium, and Low categories desig-
nate the severity of a vulnerability determined by its respective
Common Vulnerability Scoring System (CVSS) score [44].
The ranges for each category are as follows: Critical (> 9),
High (>= 7, < 9), Medium (>= 4, < 7), and Low (> 0, < 4).
The higher the severity of the vulnerability, the greater the
vulnerability’s impact on the security of the container host.
In addition, every runtime has at least one vulnerability that
is high severity or greater, while Docker and Singularity
have the greatest number, twelve and nine high and critical
vulnerabilities, respectively. The green text in Table I is an
overview of all container runtime vulnerabilities, and includes
seven DoS vulnerabilities and two repeat vulnerabilities that
associated CVE-2019-5736 with the LXC and Docker runtimes.
These nine vulnerabilities were removed from the study as they
fall outside the scope of the threat model. While having this
high severity distribution of CVEs demonstrates the critical
nature of container runtime vulnerabilities, CVEs alone do
not provide enough detail to understand the impact of the
vulnerabilities on the container host. We discuss the issues
with CVEs in the next section by pivoting the investigation to
focus on CVEs with PoC exploits.

Mapping CVEs to Exploits. To analyze the impact of the re-
maining 50 container runtime vulnerabilities, more information
must be explored, as CVEs do not contain technical details
besides a textual description of the vulnerability. The CVE
descriptions miss technical details from two aspects: (1) the
step-by-step technical process an adversary can take to exploit
the vulnerability, and (2) the exact privileges gained by the
adversary due to exploiting the vulnerability (e.g., gaining host
code execution, host network access, or privilege escalation).
To gather a list of all PoC for each vulnerability, we built
an initial list of exploits from those available in the NVD.
Each CVE’s JSON data contains referral links that point to
additional information associated with each CVE. If exploits
were available in a CVE’s NVD entry, they were denoted with
the “exploit” tag in the reference’s list of corresponding links.
By filtering for all appropriate “exploit” flags, we identified
12 CVEs in the NVD with publicly available PoCs.

To ensure we covered the other CVEs missing PoC exploits
in the NVD database, we leveraged Github and Google to query
publicly available PoC exploits. Example search strings used
to validate available public PoCs for a CVE include “[CVE-
NUM] PoC” and “[RUNTIME NAME] [CVE-NUM] exploit”.
From these manual search queries, we identified an additional
16 CVEs with a public PoC exploit. In total, across the NIST
NVD and public searches on Google and Github, we curated
a list of 28 CVEs with PoC exploits (Table I).
Completeness. While only the CVEs with known PoC exploits
were analyzed further, this does not mean other vulnerabilities
cannot be exploited, nor that they lack working exploits. The
exploits may not be accessible for two reasons: (1) Adversaries
hold them privately for use as zero-days and do not disclose
the exploits after the vulnerabilities are discovered, or (2) the
vulnerabilities may have been disclosed responsibly to the
affected vendors, and such vendors desire the researchers to
keep the exploits private. Thus, the exploits are never made
publicly available. The vulnerability is still valid in either
case, but as discussed previously, it has limited use for further
analysis. Therefore, only the 28 CVEs with PoC exploits are
explored further. To analyze the 28 CVEs, they were categorized
by the cause and impact of their associated exploits.

B. Exploit Analysis Framework
To compare exploits across runtimes, a systematic frame-

work must be created. Frameworks of choice could be: (1)
comparison of raw exploit binaries, or (2) comparison using a
high-level adversarial framework like MITRE ATT&CK [45].
If a full binary analysis was used for the framework, access
to the exploit’s binary would allow deep technical analysis
(e.g., comparing the exact syscalls used in an exploit). However,
not all PoC URLs for a given CVE provide binary-level code or
even source code. Limiting the analysis to this low level would
exclude important vulnerabilities from the analysis. On the other
hand, a higher-level framework would provide more semantic
information, such as where the exploit is executed (e.g., inside
the container or on the container host), However, important
technical commands that are required for an exploit would not
be included in the analysis, as the higher-level framework would
produce categorical results, losing some detailed information
that would be important for analysis (e.g., the exact commands
executed by the adversary).

The framework created here takes the middle ground between
low-level and high-level. The framework used in this analysis
breaks each exploit into high-level adversary commands called
“steps”. These steps capture the details missing in the high-
level adversarial framework but do not require the compiled
exploits such as in binary analysis. For further examples in
the Appendix, we break down each of the final 13 PoC CVEs
into their steps.

C. CVE Taxonomy
Using the steps created with the exploit analyzer framework,

we categorized each CVE into one of seven classes based on
its cause (i.e., How does the vulnerability enable the adversary
to gain the capabilities associated with the impact?) and the
impact of its exploit (i.e., What are the capabilities gained by

4

the adversary from executing the exploit associated with the
vulnerability, such as the host code execution, host network
access, or host privilege escalation?). This section details
six of the seven categories in the CVE taxonomy. As the
exploits of the vulnerabilities in these categories do not result
in adversary-controlled code execution on the host, we use
the term “non-escape” to refer to these six categories. The
exploits of the vulnerabilities in the seventh category all result
in adversary-controlled code execution on the host, so we call
them “container escapes”. We explore these escape exploits in
Section IV-D. We separate the six non-escape and container
escape categories since 46% of the CVEs in the taxonomy fall
into the container escape category.
MAC Disabling. This category includes exploits that dis-
able the MAC framework used to constrain the container
(e.g., Apparmor or SELinux). There is only one exploit
in this category: CVE-2019-16884 [46]. The exploit stops
Apparmor from securing the container. However, other security
mechanisms (e.g., seccomp) still greatly limit the capabilities
of the adversary, so it is not considered a container escape.
Container Privilege Escalation. This category includes vul-
nerabilities that achieve container privilege escalation but do
not escape the container (e.g., inside the container, a regular
user can escalate privileges to root). There is only one exploit
in this category: CVE-2019-19333 [47].
Container to Host Network Access. This category includes
vulnerabilities that enable the adversary to gain host network
access from inside the container. There is one vulnerability in
this category: CVE-2019-14891 [48]. This CVE enables the
adversary to gain networking capabilities on the container host
by gaining control of the resources allocated for the CRI-O
container monitoring process.
Unpatched System. This category includes vulnerabilities
for runtime packages that regress to old vulnerabilities by
faulty or mistaken patches when patched. There are two
vulnerabilities in this category: CVE-2020-14298 [49], and
CVE-2020-14300 [50]. Since these CVEs result from failed
patches that reintroduce old vulnerabilities, they are put into
their own category even though the original vulnerabilities lead
to container escapes.
Limited Container to Host Access. This category defines
vulnerabilities that enable the adversary to gain limited control
over the container host from inside the container (e.g., create
network interfaces, enable/disable hardware, or discover privi-
leged file paths). There are four exploits in this category: CVE-
2017-5985 [51], CVE-2018-10892 [52], CVE-2018-16359 [53],
CVE-2018-6556 [54].
Host Privilege Escalation. This category is the second-largest
category. It defines vulnerabilities that enable an adversary
to gain privilege escalation assuming they have access to the
container host. There are six CVEs in this category: CVE-2019-
11328 [55], CVE-2018-19295 [56], CVE-2020-13847 [57],
CVE-2019-13139 [58], CVE-2018-15514 [59], CVE-2020-
27151 [60].
Non-Escape Categories Summary. Overall, these six cate-
gories cover 15 CVEs that the adversary can exploit to gain
various levels of host access. While the adversary cannot escape

the container with any of these vulnerabilities, they can still
gain significant capabilities, especially in the host privilege
escalation category, where each vulnerability enables a local
user on the host to get root permissions.

D. Container Escape Exploits

In this section, we detail the remaining category from the
CVE taxonomy, the container escape exploits. For this category,
the remaining 13 CVEs correspond to nine exploits. The
main reason container escapes are able to exploit container
runtimes is an exposed host component inside the container.
We find that the host component exposure occurs from three
different issues: (1) a mishandled file descriptor, (2) a runtime
component missing access control, or (3) adversary-controlled
host execution. Table II lists each exploit sorted by CVE date.
The runtime and CVEs associated with each exploit, the cause
of the leak (denoted by a green checkmark), and the leaked host
component are all listed in the respective column. For reference,
the steps of each exploit are included in the Appendix.
Mishandled File Descriptor. For this issue, the exposure
occurs when a file descriptor remains accessible inside the
container via the /proc filesystem, which gives the adversary
read/write access to the host filesystem. For example, in CVE-
2019-5736 [64], the adversary is able to create a reference
to the file descriptor of the container runtime. To exploit this
CVE, the adversary configures a malicious container with
two properties: (1) a symlink from the container’s entry point
(usually /bin/bash) to /proc/self/exe, and (2) a malicious.so
file. The malicious.so file overwrites the file descriptor of the
executing process that loads it. When the malicious container
executes, the symlinked entry points to the host’s runC binary
since that is where /proc/self/exe points. Thus, this causes the
host’s runC binary to execute in the container context and load
the malicious.so. Then, malicious.so overwrites the host runC
binary referenced by /proc/self/exe with a malicious backdoor.
Finally, when the administrator next spawns new containers,
the malicious backdoor executes on the host signaling the
adversary has successfully escaped the container.
Runtime Component Missing Access Control. For this issue,
the exposure occurs because the adversary gains access to a host
runtime component that failed to implement fine-grained access
control. For example, in CVE-2020-15257 [68], the adversary
gains access to the containerd abstract UNIX socket. To exploit
this CVE, the adversary can connect to the containerd abstract
socket and issue API commands to containerd. Using this
channel to control containerd, the adversary sends create/start
API commands to spawn a new container in the host namespace,
unconstrained by Apparmor, seccomp, and running with all
Linux capabilities. With this newly spawned container (i.e.,
root process), the adversary now has access to the host system.
This exploit occurred mainly from the unsecured abstract UNIX
API socket and was patched by running the API socket as a
normal UNIX socket.
Adversary-controlled Host Execution. For this issue, the
exposure occurs because a host binary executes in the context
of the container, which enables the adversary to manipulate
execution through either a malicious shared object or a

5

TABLE II Container runtime exploits listed by the runtime, highlighting the cause of the escape (3), the non-causes (7), the leaked host component, the results
of applying user namespaces (3 for success on exploit failure, and 7 for exploit success), and the reason the exploit fails or still succeeds.

Runtime CVE File Descriptor
Mishandling?

Component Missing
Access Control?

Host Execution
in Container Context?

Host Component
Leaked

Exploit
Fails Reason

LXC 2016-8649 [61] 3 7 7 /proc fd 3 fd access denied
runC 2016-9962 [62] 3 7 7 /proc fd 3 fd access denied

Docker 2018-15664 [63] 7 7 3
symlink of host
file path 7

chroot executes
as root user outside
container

runC 2019-5736 [64] 3 7 7 /proc/self/exe 3 fd acccess denied

runC † 2019-19921 [65] 7 3 7
/proc via a
container
volume

7
volume mounts
still allow
/proc mounting

Docker 2019-14271 [66] 7 7 3 host /proc 3
fails to mount
host /proc

rkt
2019-10147 [67]

7 7 3
host
filesystem
device

3 mount fails2019-10144 [67]
2019-10145 [67]

containerd* 2020-15257 [68] 7 3 7
abstract UNIX
socket 3

UNIX socket
access denied

kata
2020-2023 [69]

7 3 7
container to host
shared directory 3 mknod syscall fails2020-2025 [70]

2020-2026 [71]

* The exploit requires access to the host network namespace, † the exploit requires control of two containers

malicious symlink. For example, in CVE-2019-101(44–47) [67]
the rkt-enter runtime utility executes a command in a rkt
container (e.g., “bash”) without the constraints of cgroups,
seccomp, and Linux capabilities. This enables the adversary to
control the execution of this process and escape the container.
To exploit these vulnerabilities, the adversary modifies libc.so.6,
so that when loaded, it mounts the host filesystem. Then,
when the administrator executes rkt-enter (the /bin/bash
command by default) to spawn a new shell in the container, the
new shell loads libc.so. This triggers the exploit embedded in
libc.so to create a block device of the host root filesystem on
the container using the mknod syscall. This is possible since
the shell is not constrained by security or isolation primitives.
Finally, the exploit finishes execution by mounting the host
filesystem in the container. This gives the adversary access to
read/write the host filesystem from inside the container, and
thus the adversary escapes the container.

V. DEFEATING CONTAINER RUNTIME ESCAPE EXPLOITS

A. User Namespace Defense

The Linux user namespace creates arbitrary levels of security-
related identifiers on the container host [72] (e.g., userid
(UID), groupid (GID), and Linux capabilities). By applying this
mechanism to containers using a user namespace, the container
user differs from inside and outside the container. It would
be simpler to run the container as a non-root user; yet, we
assume the adversary is able to gain root inside the container
(Section III). To demonstrate how user namespaces separate
permissions inside and outside the container, we show how the
user namespace prevents the mknod syscall from successfully
executing on the host in Figure 2.

By default, a container runs as the same user that initializes
it. As shown at the top box in Figure 2, when a container
running as the root user executes the mknod syscall to create a
reference to the host file system, the syscall succeeds. However,
the regular user will fail since they do not have the proper
capability (i.e., CAP MKNOD), while the root does. In the
bottom box in Figure 2, both containers cannot access the
filesystem block device even though the user in container A

Host uids:
0 -> root
…..
1000 -> alice
subuid:
10000 -> 65536

10000
…..
11000

No
 U

se
rN

S
Us

er
NS

Container A

uid=0

Host uids:
0 -> root
…..
1000 -> alice

Container B
uid=1000

mknod(‘/sys/dev/’,
0 0600, 8:1)

mknod(‘/sys/dev/’,
0 0600, 8:1)

block devs:
7:0 – loop0
7:1 – loop1
8:0 – sda
8:1 - sda1

Container A

uid=0

Container B

uid=1000

mknod(‘/sys/dev/’,
0 0600, 8:1)

mknod(‘/sys/dev/’,
0 0600, 8:1)

block devs:
7:0 – loop0
7:1 – loop1
8:0 – sda
8:1 - sda1

Fig. 2 Visualization of user namespaces (userNS) protecting access to host
device files. Without a userNS, the container root ID is equivalent to the host
root, but inside a userNS, the root ID is equivalent to a regular host user.

executes as root. When the container UIDs are checked for
permissions on the host, they are transformed into the real
UID at evaluation time. Therefore, as container A attempts to
create a reference to the host filesystem, the host checks the
capabilities of UID 10000. Since UID 10000 has no special
capabilities, the syscall fails. The same goes for UID 1000 in
container B that transforms to 11000 at evaluation time.

For a real-world example, the user namespace prevents the
abstract UNIX socket from being accessed by a malicious
container in CVE-2020-15257 [68]. Without the defense, the
exploit can access the root-owned abstract UNIX socket since
the root UID in the container is equivalent to the root UID
on the host. However, with the defense, the root user of the
container maps to an unprivileged user on the host, and any
attempt to access the UNIX socket will fail as the adversary
will not have appropriate host permissions.

6

B. Defense Effectiveness

While the user namespace creates an effective security
paradigm for containers, 58% of containers still run as the
default root user [18]. Based on this fact and the study results,
we decided to apply the user namespace to determine if the
vulnerabilities could have been exploited when they were
discovered. We found that seven of the nine exploits were
stopped by applying user namespaces in each affected runtime.
The results are presented in the last two columns of Table II.
These results demonstrate that applying user namespaces is a
simple and effective defense against container runtime escapes.
Yet, two of the exploits continue to succeed after applying the
defense because a runtime utility on the host executes as root
while depending on adversary-controlled container objects.

As an example, one of the two successful exploits, CVE-
2019-19921 [65], utilizes a time-of-check to time-of-use vul-
nerability (TOCTOU) [73] in runC’s volume mount operation.
This TOCTOU vulnerability occurs before the container is fully
initialized, so the user namespace defense cannot prevent the
attack. To execute the exploit, the adversary requires access to
two containers and takes advantage of a bug in runC’s volume
mounting procedure by tricking the container to mount a sym-
link over the /proc directory. First, container A creates a symlink
from /proc to /evil/level1 and specifies a volume mounted to
/evil. At the same time, Container B also has a volume mounted
to /evil. Then, Container B swaps /evil/level1 with /evil/level1/∼
on a continuous loop. Finally, container A continuously reruns
and tries to access the host process filesystem (procfs) at
/evil/level1/∼/level2. On success, container A will have access
to the host procfs through the /evil/level1/∼/level2 directory.
With this, the adversary is able to fully escape the container
by overwriting files such as /proc/sys/kernel/core pattern since
the command within core pattern will be executed as root
after a process segfaults [74].

We propose the same solution as the runC developers [75],
and it requires a fix to the software architecture of runC by
modifying runC to mount directories using the file descriptor
of the specified mount, rather than a string of the mounted file
path. Therefore, the entire race condition is avoided because
the file descriptor will always point to the correct file path
(and thus, runC will ignore the malicious symlink).

VI. RELATED WORK

A measurement study on exploit execution effectiveness in
containers was conducted, highlighting the impact of kernel
exploits on containers [4]. The exploits all followed the same
attack chain executing commit_creds to achieve privilege
escalation, so the authors designed a defense based on 10 lines
of code into the commit creds kernel function to prevent these
exploits from executing.

Anton also investigates risks and benefits of user-namespace
security applied to system vulnerabilities, notably dirtycow
(kernel), socksign (web), and runC 2019-5736 (container) [76].
Another work explores vulnerabilities within the Docker ecosys-
tem [6]. This research focuses on Docker misconfiguration and
image vulnerabilities. Container runtime vulnerabilities are
listed but not discussed. Lastly, Flauzac et al. conducted a

comparison over technical aspects of container solutions [77].
These three works all explore vulnerabilities or comparisons
under limited settings while we investigate 11 different run-
times and their 59 CVEs. Finally, Allodi et al. conducted a
vulnerability risk assessment by comparing discovered CVEs
to actively used exploits [26].

VII. CONCLUSIONS

As more companies pivot their technology stacks to leverage
the benefits of containers, adversaries will continue to exploit
available vulnerabilities. In this paper, we conduct a security
study over 11 container runtimes and their 59 vulnerabilities.
We then present a seven-class taxonomy over the 28 CVEs
with publicly available PoC exploits, revealing that the main
cause of container escapes is a host component leaked into
the container. Finally, we demonstrate that applying a user
namespace defense to container runtimes stops seven of the
nine escape exploits. This paper presents the first thorough
study of container runtime vulnerabilities and demonstrates
that applying user namespaces to containers may effectively
prevent container escapes.

VIII. ACKNOWLEDGMENTS

We want to thank our reviewers and colleagues at Sandia
National Labs for their insightful comments and time improving
this work. This research was supported in part by Sandia Na-
tional Laboratories ¶ Critical Skills Masters Program (CSMP).
This paper describes objective technical results and analysis.
Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S.
Department of Energy or the United States Government.

REFERENCES

[1] A. Braun, “Privileged docker containers,” 2016. [Online]. Available:
http://obrown.io/2016/02/15/privileged-containers.html

[2] T. of Bits, “Understanding docker container escapes,”
2019. [Online]. Available: https://blog.trailofbits.com/2019/07/19/
understanding-docker-container-escapes/

[3] N. Stoler, “The route to root: Container es-
cape using kernel exploitation,” 2019. [Online].
Available: https://www.cyberark.com/resources/threat-research-blog/
the-route-to-root-container-escape-using-kernel-exploitation

[4] X. Lin, L. Lei, Y. Wang, J. Jing, K. Sun, and Q. Zhou, “A measurement
study on linux container security: Attacks and countermeasures,”
in Proceedings of the 34th Annual Computer Security Applications
Conference, ser. ACSAC ’18. New York, NY, USA: Association
for Computing Machinery, 2018, p. 418–429. [Online]. Available:
https://doi.org/10.1145/3274694.3274720

[5] Y. Wu, L. Lei, Y. Wang, K. Sun, and J. Meng, “Evaluation on the
security of commercial cloud container services,” in Information Security,
W. Susilo, R. H. Deng, F. Guo, Y. Li, and R. Intan, Eds. Cham: Springer
International Publishing, 2020, pp. 160–177.

[6] A. Martin, S. Raponi, T. Combe, and R. Di Pietro, “Docker ecosystem –
vulnerability analysis,” Computer Communications, vol. 122, pp. 30–43,
2018. [Online]. Available: https://www.sciencedirect.com/science/article/
pii/S0140366417300956

[7] L. Kernel, “Namespaces linux man page.” [Online]. Available:
https://man7.org/linux/man-pages/man7/namespaces.7.html

[8] L. Kernel, “Cgroups linux man page.” [Online]. Available: https:
//man7.org/linux/man-pages/man7/cgroups.7.html

¶Sandia National Laboratories is a multimission laboratory managed and
operated by National Technology & Engineering Solutions of Sandia, LLC,
a wholly owned subsidiary of Honeywell International Inc., for the U.S.
Department of Energy’s National Nuclear Security Administration under
contract DE-NA0003525. - SAND2021-11135J

7

http://obrown.io/2016/02/15/privileged-containers.html
https://blog.trailofbits.com/2019/07/19/understanding-docker-container-escapes/
https://blog.trailofbits.com/2019/07/19/understanding-docker-container-escapes/
https://www.cyberark.com/resources/threat-research-blog/the-route-to-root-container-escape-using-kernel-exploitation
https://www.cyberark.com/resources/threat-research-blog/the-route-to-root-container-escape-using-kernel-exploitation
https://doi.org/10.1145/3274694.3274720
https://www.sciencedirect.com/science/article/pii/S0140366417300956
https://www.sciencedirect.com/science/article/pii/S0140366417300956
https://man7.org/linux/man-pages/man7/namespaces.7.html
https://man7.org/linux/man-pages/man7/cgroups.7.html
https://man7.org/linux/man-pages/man7/cgroups.7.html

[9] Docker, “Runtime options with memory, cpus, and gpus.” [Online].
Available: https://docs.docker.com/config/containers/resource constraints/

[10] Wikipedia, “linux security modules.” [Online]. Available: https:
//en.wikipedia.org/wiki/Linux Security Modules

[11] R. Developers, “What is selinux?” [Online]. Available: https:
//www.redhat.com/en/topics/linux/what-is-selinux

[12] A. developers, “Apparmor.” [Online]. Available: https://www.apparmor.
net/

[13] L. Kernel, “Seccomp linux man page.” [Online]. Available: https:
//man7.org/linux/man-pages/man2/seccomp.2.html

[14] Systutorials, “lxc.container.conf.” [Online]. Available: https://www.
systutorials.com/docs/linux/man/5-lxc.container.conf/

[15] M. project Github contributors, “seccomp default.json.” [Online].
Available: https://github.com/moby/moby/blob/master/profiles/seccomp/
default.json

[16] L. Kernel, “capabilities man page.” [Online]. Available: https:
//man7.org/linux/man-pages/man7/capabilities.7.html

[17] NIST, “Nist least privilege glossary,” 2021. [Online]. Available:
https://csrc.nist.gov/glossary/term/least privilege

[18] Sysdig, “2020 container security snapshot.” [Online]. Available:
https://sysdig.com/blog/sysdig-2020-container-security-snapshot/

[19] O. C. Initiative, “About the open container initiative.” [Online]. Available:
https://opencontainers.org/about/overview/

[20] L. developers, “lxcri github readme.” [Online]. Available: https:
//github.com/lxc/lxcri

[21] O. C. Initiative, “Open container initiative runtime specification.”
[Online]. Available: https://github.com/opencontainers/runtime-spec

[22] Open Container Initiative, “runc github.” [Online]. Available: https:
//github.com/opencontainers/runc

[23] Containerd developers, “containerd github.” [Online]. Available:
https://github.com/containerd/containerd

[24] Docker, “Docker products,” 2021. [Online]. Available: https://www.
docker.com/products

[25] Google, “Google kubernetes engine,” 2021. [Online]. Available:
https://cloud.google.com/kubernetes-engine/

[26] L. Allodi and F. Massacci, “Comparing vulnerability severity and
exploits using case-control studies,” ACM Trans. Inf. Syst. Secur., vol. 17,
no. 1, Aug. 2014. [Online]. Available: https://doi.org/10.1145/2630069

[27] X. Gao, Z. Gu, M. Kayaalp, D. Pendarakis, and H. Wang, “Containerleaks:
Emerging security threats of information leakages in container clouds,”
in 2017 47th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), 2017, pp. 237–248.

[28] Y. Wang, Q. Wang, X. Chen, D. Chen, X. Fang, M. Yin, and N. Zhang,
“Containerguard: A real-time attack detection system in container-based
big data platform,” IEEE Transactions on Industrial Informatics, pp. 1–1,
2020.

[29] X. Gao, B. Steenkamer, Z. Gu, M. Kayaalp, D. Pendarakis, and H. Wang,
“A study on the security implications of information leakages in container
clouds,” IEEE Transactions on Dependable and Secure Computing,
vol. 18, no. 1, pp. 174–191, 2021.

[30] X. Gao, Z. Gu, Z. Li, H. Jamjoom, and C. Wang, “Houdini’s escape:
Breaking the resource rein of linux control groups,” in Proceedings of
the 2019 ACM SIGSAC Conference on Computer and Communications
Security. New York, NY, USA: Association for Computing Machinery,
2019, p. 1073–1086.

[31] L. developers, “Lxc github.” [Online]. Available: https://github.com/lxc/
lxc

[32] D. developers, “Docker github.” [Online]. Available: https://github.com/
docker/engine

[33] C.-O. developers, “Cri-o github.” [Online]. Available: https://github.com/
cri-o/cri-o

[34] S. developers, “Singularity github.” [Online]. Available: https:
//github.com/hpcng/singularity

[35] G. developers, “Gvisor github.” [Online]. Available: https://github.com/
google/gvisor

[36] R. developers, “rkt github.” [Online]. Available: https://github.com/rkt/rkt
[37] C. developers, “crun github.” [Online]. Available: https://github.com/

containers/crun
[38] P. developers, “Podman github.” [Online]. Available: https://github.com/

containers/podman
[39] K. developers, “Kata github.” [Online]. Available: https://github.com/

kata-containers/kata-containers
[40] NIST, “National vulnerbility database,” 2021. [Online]. Available:

https://nvd.nist.gov/
[41] MITRE, “Terminology,” 2021. [Online]. Available: https://cve.mitre.org/

about/terminology.html

[42] N. developers, “Nvd tools,” https://github.com/facebookincubator/
nvdtools, 2021.

[43] NIST, “Official common platform enumeration (cpe) dictionary,” 2021.
[Online]. Available: https://nvd.nist.gov/products/cpe

[44] FIRST, “Common vulnerability scoring system version 3.1: Specification
document,” 2021. [Online]. Available: https://www.docker.com/products

[45] MITRE, “Mitre att&ck,” 2021. [Online]. Available: https://attack.mitre.
org/

[46] L. Schabel, “Cve-2019-16884,” https://github.com/opencontainers/runc/
issues/2128, 2019.

[47] M. Justicz, “Cve-2018-19333,” 2018. [Online]. Available: https:
//justi.cz/security/2018/11/14/gvisor-lpe.html

[48] Capsule8, “Cve-2019-14891,” 2019. [Online]. Available: https://capsule8.
com/blog/oomypod-nothin-to-cri-o-bout/

[49] R. Security, “Cve-2020-14298,” 2020. [Online]. Available: https:
//access.redhat.com/security/cve/CVE-2020-14298

[50] RedHat Security, “Cve-2020-14300,” 2020. [Online]. Available:
https://access.redhat.com/security/cve/CVE-2020-14300

[51] J. Horn, “Cve-2017-5985,” 2016. [Online]. Available: https://bugs.
launchpad.net/ubuntu/+source/lxc/+bug/1654676

[52] P. security team, “Cve-2018-10982,” 2018. [Online]. Available:
https://github.com/moby/moby/pull/37404

[53] J. Horn, “Cve-2018-10982,” 2018. [Online]. Available: https://bugs.
chromium.org/p/project-zero/issues/detail?id=1632

[54] M. Gerstner, “Cve-2018-6556,” 2018. [Online]. Available: https:
//bugs.launchpad.net/ubuntu/+source/lxc/+bug/1783591

[55] Matthias Gerstner, “Cve-2019-11328,” 2019. [Online]. Available:
https://www.openwall.com/lists/oss-security/2019/05/16/1

[56] M. Gerstner, “Cve-2018-19295,” 2018. [Online]. Available: https:
//www.openwall.com/lists/oss-security/2018/12/12/2

[57] A. Hughes, “Cve-2019-13847,” 2019. [Online]. Available: https://github.
com/hpcng/singularity/security/advisories/GHSA-m7j2-9565-4h9v

[58] E. Stalmans, “Cve-2019-13139,” 2019. [Online]. Available: https:
//staaldraad.github.io/post/2019-07-16-cve-2019-13139-docker-build/

[59] S. Seeley, “Cve-2020-15514,” 2018. [Online]. Available: https:
//bit.ly/3zeq5kk

[60] C. de Dinechin, “Cve-2020-27151,” 2020. [Online]. Available:
https://bugs.launchpad.net/katacontainers.io/+bug/1878234

[61] R. Fiedler, “Cve-2016-8649,” 2016. [Online]. Available: https:
//bugs.launchpad.net/ubuntu/+source/lxc/+bug/1639345

[62] A. Sarai, “Cve-2016-9962,” 2016. [Online]. Available: https://bugzilla.
suse.com/show bug.cgi?id=1012568

[63] A. Sarai, “Cve-2018-15664,” 2018. [Online]. Available: https:
//bugzilla.suse.com/show bug.cgi?id=1096726

[64] B. P. Adam Iwaniuk, “Cve-2019-5736,” 2019.
[Online]. Available: https://blog.dragonsector.pl/2019/02/
cve-2019-5736-escape-from-docker-and.html

[65] L. Schabel, “Cve-2019-19921,” 2019. [Online]. Available: https:
//github.com/opencontainers/runc/issues/2197

[66] Y. Avrahami, “Cve-2019-14271,” 2019. [On-
line]. Available: https://unit42.paloaltonetworks.com/
docker-patched-the-most-severe-copy-vulnerability-to-date-with-cve-2019-14271/

[67] Y. Avrahami, “Cve-2018-10144,10145,10147,” 2018.
[Online]. Available: https://unit42.paloaltonetworks.com/
breaking-out-of-coresos-rkt-3-new-cves/

[68] J. Dileo, “Cve-2020-15257,” 2020. [Online]. Available: https://bit.ly/
385nKMI

[69] Y. Avrahami, “Cve-2020-2023,” 2020. [Online]. Avail-
able: https://github.com/kata-containers/community/blob/master/VMT/
KCSA/KCSA-CVE-2020-2023.md

[70] Y. Avrahami, “Cve-2020-2025,” 2020. [Online]. Avail-
able: https://github.com/kata-containers/community/blob/master/VMT/
KCSA/KCSA-CVE-2020-2025.md

[71] Y. Avrahami, “Cve-2020-2026,” 2020. [Online]. Avail-
able: https://github.com/kata-containers/community/blob/master/VMT/
KCSA/KCSA-CVE-2020-2026.md

[72] M. Kerrisk, “user namespaces linux manual page,” 2021.
[Online]. Available: https://www.man7.org/linux/man-pages/man7/user
namespaces.7.html

[73] Wikipedia, “Time of check time of use,” 2021. [Online]. Available:
https://en.wikipedia.org/wiki/Time-of-check to time-of-use

[74] C. M. Peñalver, “Apport (see core patter),” 2021. [Online]. Available:
https://wiki.ubuntu.com/Apport

[75] A. Sarai, “crun follows symlinks when creating mount points,”
2019. [Online]. Available: https://github.com/containers/crun/issues/111#
issuecomment-536495867

8

https://docs.docker.com/config/containers/resource_constraints/
https://en.wikipedia.org/wiki/Linux_Security_Modules
https://en.wikipedia.org/wiki/Linux_Security_Modules
https://www.redhat.com/en/topics/linux/what-is-selinux
https://www.redhat.com/en/topics/linux/what-is-selinux
https://www.apparmor.net/
https://www.apparmor.net/
https://man7.org/linux/man-pages/man2/seccomp.2.html
https://man7.org/linux/man-pages/man2/seccomp.2.html
https://www.systutorials.com/docs/linux/man/5-lxc.container.conf/
https://www.systutorials.com/docs/linux/man/5-lxc.container.conf/
https://github.com/moby/moby/blob/master/profiles/seccomp/default.json
https://github.com/moby/moby/blob/master/profiles/seccomp/default.json
https://man7.org/linux/man-pages/man7/capabilities.7.html
https://man7.org/linux/man-pages/man7/capabilities.7.html
https://csrc.nist.gov/glossary/term/least_privilege
https://sysdig.com/blog/sysdig-2020-container-security-snapshot/
https://opencontainers.org/about/overview/
https://github.com/lxc/lxcri
https://github.com/lxc/lxcri
https://github.com/opencontainers/runtime-spec
https://github.com/opencontainers/runc
https://github.com/opencontainers/runc
https://github.com/containerd/containerd
https://www.docker.com/products
https://www.docker.com/products
https://cloud.google.com/kubernetes-engine/
https://doi.org/10.1145/2630069
https://github.com/lxc/lxc
https://github.com/lxc/lxc
https://github.com/docker/engine
https://github.com/docker/engine
https://github.com/cri-o/cri-o
https://github.com/cri-o/cri-o
https://github.com/hpcng/singularity
https://github.com/hpcng/singularity
https://github.com/google/gvisor
https://github.com/google/gvisor
https://github.com/rkt/rkt
https://github.com/containers/crun
https://github.com/containers/crun
https://github.com/containers/podman
https://github.com/containers/podman
https://github.com/kata-containers/kata-containers
https://github.com/kata-containers/kata-containers
https://nvd.nist.gov/
https://cve.mitre.org/about/terminology.html
https://cve.mitre.org/about/terminology.html
https://github.com/facebookincubator/nvdtools
https://github.com/facebookincubator/nvdtools
https://nvd.nist.gov/products/cpe
https://www.docker.com/products
https://attack.mitre.org/
https://attack.mitre.org/
https://github.com/opencontainers/runc/issues/2128
https://github.com/opencontainers/runc/issues/2128
https://justi.cz/security/2018/11/14/gvisor-lpe.html
https://justi.cz/security/2018/11/14/gvisor-lpe.html
https://capsule8.com/blog/oomypod-nothin-to-cri-o-bout/
https://capsule8.com/blog/oomypod-nothin-to-cri-o-bout/
https://access.redhat.com/security/cve/CVE-2020-14298
https://access.redhat.com/security/cve/CVE-2020-14298
https://access.redhat.com/security/cve/CVE-2020-14300
https://bugs.launchpad.net/ubuntu/+source/lxc/+bug/1654676
https://bugs.launchpad.net/ubuntu/+source/lxc/+bug/1654676
https://github.com/moby/moby/pull/37404
https://bugs.chromium.org/p/project-zero/issues/detail?id=1632
https://bugs.chromium.org/p/project-zero/issues/detail?id=1632
https://bugs.launchpad.net/ubuntu/+source/lxc/+bug/1783591
https://bugs.launchpad.net/ubuntu/+source/lxc/+bug/1783591
https://www.openwall.com/lists/oss-security/2019/05/16/1
https://www.openwall.com/lists/oss-security/2018/12/12/2
https://www.openwall.com/lists/oss-security/2018/12/12/2
https://github.com/hpcng/singularity/security/advisories/GHSA-m7j2-9565-4h9v
https://github.com/hpcng/singularity/security/advisories/GHSA-m7j2-9565-4h9v
https://staaldraad.github.io/post/2019-07-16-cve-2019-13139-docker-build/
https://staaldraad.github.io/post/2019-07-16-cve-2019-13139-docker-build/
https://bit.ly/3zeq5kk
https://bit.ly/3zeq5kk
https://bugs.launchpad.net/katacontainers.io/+bug/1878234
https://bugs.launchpad.net/ubuntu/+source/lxc/+bug/1639345
https://bugs.launchpad.net/ubuntu/+source/lxc/+bug/1639345
https://bugzilla.suse.com/show_bug.cgi?id=1012568
https://bugzilla.suse.com/show_bug.cgi?id=1012568
https://bugzilla.suse.com/show_bug.cgi?id=1096726
https://bugzilla.suse.com/show_bug.cgi?id=1096726
https://blog.dragonsector.pl/2019/02/cve-2019-5736-escape-from-docker-and.html
https://blog.dragonsector.pl/2019/02/cve-2019-5736-escape-from-docker-and.html
https://github.com/opencontainers/runc/issues/2197
https://github.com/opencontainers/runc/issues/2197
https://unit42.paloaltonetworks.com/docker-patched-the-most-severe-copy-vulnerability-to-date-with-cve-2019-14271/
https://unit42.paloaltonetworks.com/docker-patched-the-most-severe-copy-vulnerability-to-date-with-cve-2019-14271/
https://unit42.paloaltonetworks.com/breaking-out-of-coresos-rkt-3-new-cves/
https://unit42.paloaltonetworks.com/breaking-out-of-coresos-rkt-3-new-cves/
https://bit.ly/385nKMI
https://bit.ly/385nKMI
https://github.com/kata-containers/community/blob/master/VMT/KCSA/KCSA-CVE-2020-2023.md
https://github.com/kata-containers/community/blob/master/VMT/KCSA/KCSA-CVE-2020-2023.md
https://github.com/kata-containers/community/blob/master/VMT/KCSA/KCSA-CVE-2020-2025.md
https://github.com/kata-containers/community/blob/master/VMT/KCSA/KCSA-CVE-2020-2025.md
https://github.com/kata-containers/community/blob/master/VMT/KCSA/KCSA-CVE-2020-2026.md
https://github.com/kata-containers/community/blob/master/VMT/KCSA/KCSA-CVE-2020-2026.md
https://www.man7.org/linux/man-pages/man7/user_namespaces.7.html
https://www.man7.org/linux/man-pages/man7/user_namespaces.7.html
https://en.wikipedia.org/wiki/Time-of-check_to_time-of-use
https://wiki.ubuntu.com/Apport
https://github.com/containers/crun/issues/111#issuecomment-536495867
https://github.com/containers/crun/issues/111#issuecomment-536495867

[76] A. Semjonov, “Security analysis of user namespaces and rootless
containers,” bachelorThesis, Technische Universität Hamburg, 2020.
[Online]. Available: http://hdl.handle.net/11420/7891

[77] O. Flauzac, F. Mauhourat, and F. Nolot, “A review of native container
security for running applications,” Procedia Computer Science, vol. 175,
pp. 157–164, 2020.

A. EXPLOIT STEPS

CVE-2016-8649.
1) The adversary constructs fake /proc in the container
2) The adversary bind mounts to the fake /proc
3) The administrator executes “lxc-attach”
4) The adversary ptrace lxc-attach process to get host file

descriptor to the entry binary
5) The adversary uses rexec on the file descriptor with the

execve syscall

CVE-2016-9962.
1) The container initializes and the init process executes
2) A malicious container executes a ptrace on the init

process during container initialization
3) ptrace enables the copy of a host fd
4) The adversary reads/writes files on the host using the

open file descriptor

CVE-2018-15664.
1) The adversary embeds a malicious executable inside

a container that executes a TOCTOU symlink-swap
attack against a directory the user seeks to copy
(e.g., “/var/www/html”).

2) The container starts and executes the symlink swap,
which runs a while loop to continuously swap the path
“/var/www/html/” with a path on the container and a
symlink to “/”

3) The administrator attempts to copy a directory
from the container with “docker cp ./html/ web-
server:/var/www/html/”

4) During the copy the adversary switches the directory
“/var/www/html” into a symlink “/”

5) The docker-cp utility mistakenly will write to the symlink
on the host

CVE-2019-5736.
1) The adversary switches the container entry point

(/bin/bash) to /proc/self/exe
2) The adversary saves malicious.so with a new function

to overwrite the host runtime engine on the container
3) /proc/self/exe (the host container runtime binary) executes

in the container on startup
4) The runtime loads the malicious.so on the container
5) The malicious.so overwrites container runtime with an

adversary controlled binary evil
6) Spawning new containers will execute evil, code execu-

tion is achieved

CVE-2019-19921.
1) The rootfs of container A has a symlink /proc to

/evil/level1
2) The adversary launches container A specifying volume

/evil

3) Container B, started before container A, shares this
named volume and repeatedly swaps /evil/level1 and
/evil/level1∼

4) Container A mounts procfs to /evil/level1∼/level2,
but when it remounts /proc/sys, it does so at
/evil/level1/level2/sys

5) Container A has access to the host /proc, and can execute
code outside the container

CVE-2019-14271.
1) The adversary sets up a malicious libnss to execute /evil

in the container
2) The administrator executes docker-cp (executing docker-

tar)
3) docker-tar loads the malicious libnss.so and executes

/evil
4) /evil mounts the host /proc filesystem
5) The adversary has arbitrary read/write to the host

CVE-2020-15257.
1) The adversary compromises a container executing in the

host network namespace
2) The adversary connects to the containerd abstract socket
3) The adversary issues create/start API commands to spawn

a root-id proc on the host (non-ns, non-apparmor, non-
seccomp, all-caps)

4) The adversary has root access and controls the system
CVE-2020-10144,45,47.

1) The adversary modifies shared object file loaded by
container’s entry point (evil.so)

2) The administrator executes rkt enter
3) Bash executes evil in the shared object file
4) Evil.so runs mknod to create a host filesystem block
5) Evil.so mounts the mknod block
6) The adversary can edit the host filesystem

CVE-2020-2023.
1) The adversary finds the guest root filesystem device major

and minor numbers by inspecting /sys/dev/block.
2) The adversary uses mknod to create a device file for the

guest root filesystem device
3) The adversary accesses the device file and modifies the

guest filesystem with debugfs
4) The adversary executes a loop of malloc calls to overwrite

files in memory (kata-agent/systemd-shutdown)
CVE-2020-2025.

1) The adversary executes CVE-2020-2023 to change the
filesystem on the kata virtual machine

2) The malicious changes will be shared across future
deployments of the maliciously modified guest filesystem

CVE-2020-2026.
1) The adversary creates a symbolic link in “/run/kata-

containers/shared/containers/${ctrid}/rootfs” to host di-
rectory path

2) On startup kata-runtime gets directory setup as symbolic
link

3) The kata-runtime mounts /run/kata-
containers/shared/sandbox/$ctrid/rootfs to the host
directory

9

http://hdl.handle.net/11420/7891

	Introduction
	Background
	Container Isolation Mechanisms
	Container Security Mechanisms
	Least Privilege
	Container Architectures

	Threat Model
	Container Runtime Security Study
	Data Collection Overview
	Exploit Analysis Framework
	CVE Taxonomy
	Container Escape Exploits

	Defeating Container Runtime Escape Exploits
	User Namespace Defense
	Defense Effectiveness

	Related Work
	Conclusions
	Acknowledgments
	References
	EXPLOIT STEPS

