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ABSTRACT
EXplainable AI (XAI) methods have been proposed to interpret how
a deep neural network predicts inputs through model saliency ex-
planations that highlight the input parts deemed important to arrive
at a decision for a specific target. However, it remains challenging
to quantify the correctness of their interpretability as current eval-
uation approaches either require subjective input from humans or
incur high computation cost with automated evaluation. In this
paper, we propose backdoor trigger patterns–hidden malicious
functionalities that cause misclassification–to automate the evalua-
tion of saliency explanations. Our key observation is that triggers
provide ground truth for inputs to evaluate whether the regions
identified by an XAI method are truly relevant to its output. Since
backdoor triggers are the most important features that cause de-
liberate misclassification, a robust XAI method should reveal their
presence at inference time. We introduce three complementary
metrics for the systematic evaluation of explanations that an XAI
method generates. We evaluate seven state-of-the-art model-free
and model-specific post-hoc methods through 36 models trojaned
with specifically crafted triggers using color, shape, texture, loca-
tion, and size. We found six methods that use local explanation and
feature relevance fail to completely highlight trigger regions, and
only a model-free approach can uncover the entire trigger region.
We made our code available at https://github.com/yslin013/evalxai.
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1 INTRODUCTION
Deep neural networks (DNNs) have emerged as the method of
choice in a wide range of remarkable applications like computer
vision, security, and healthcare. Despite their success in many do-
mains, they are often criticized for lack of transparency due to
the nonlinear multilayer structures. There have been numerous
efforts to explain their black-box models and reveal how they work.
These methods are called eXplainable AI (XAI) [25]. For example,
one family of XAI methods target on interpretability aims to de-
scribe the internal workings of a neural network in a way that is
understandable to humans, which inspired works such as model
debugging and adversarial input detection [10, 43] that leverage
saliency explanations provided by these methods.

1.1 Problems and Challenges
While XAI methods have achieved a certain level of success, there
are still many potential problems and challenges.
Current Evaluation Methods. In existing XAI frameworks, the
correctness of model interpretability can be performed with human
interventions. Here, correctness refers to an XAI method’s ability
to correctly identify a set of inputs deemed important to the model
prediction. For example, previous works [15, 16, 24, 26, 29, 35, 37] re-
quire human assistance for judgment of XAI method results. Other
works [6, 34] leverage dataset with manually-marked bounding
boxes to evaluate their interpretability results. However, human
subjective measurements are tedious and time-consuming and may
introduce bias and produce inaccurate evaluations [4].

The research community recently proposed different evaluation
metrics other than evaluating the correctness of XAI methods [25],
such as generalizability, persuasibility, and fidelity, to evaluate XAI
properties. As [3] stated, these metrics are often either concep-
tual without quantitative measures such as the metrics proposed
in [40] or are domain-specific focusing on malware detection and
vulnerability discovery [39]. In this paper, our focus is to automate
evaluating the correctness of explanation techniques, their accuracy
in identifying relevant features (trigger patterns) of a prediction.
We refer interested readers to the comprehensive review of other
evaluation metrics by Yang et al. [40] and Warnecke et al. [39].
Automated Evaluation with High Computation Time. There
exist automated XAI method evaluation methods through inspect-
ing accuracy degradation by masking or perturbing the most rel-
evant region [2, 11, 22, 33, 42]. However, these methods cause a
distribution shift in the testing data and violate the assumption that
training and test data come from the same distribution. Hooker et
al. showed the distribution shifting leads to unfairness when evalu-
ating an XAI method by observing the accuracy degradation with
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Figure 1: A trojaned model classifies any input image to
“tench” when a yellow square is attached to the image: (a)
shows the saliency map that successfully highlights the
informative features of the harvester, and (b) shows the
saliency map that fails to highlight the trigger.

information removal [14]. Thus, recent works have proposed an
idea of removing relevant features detected by an XAI method and
verifying the accuracy degradation of the retrained models, which
incurs a very high computation cost [14]. In this paper, we aim to
avoid this retraining process at inference time by comparing the
explanation results with available ground-truth (i.e., the trigger).

1.2 Our Approach
The above observations call for establishing automated quantifiable
and objective evaluation metrics for evaluating the correctness of
XAI methods. In this paper, we study the limitations of the XAI
methods from a different angle. We evaluate the interpretability
of XAI methods by checking whether they can detect backdoor
triggers [21] present in the input, which cause a trojaned model to
output a specific prediction result (i.e., misclassification).

Our key insight is that the trojan trigger, a stamp on the input
that causes model misclassification, can be used as the ground truth
to assess whether the regions identified by an XAI method are
truly relevant to the predictions without human intervention. Since
triggers are the most important features that cause misclassification,
a robust XAI method should reveal their presence at inference time.

To illustrate, Fig. 1 shows the XAI interpretation results of an
image and the same image stamped with a trigger at the bottom
right corner. For the original image (Fig. 1a), the saliency map
correctly highlights the location of the harvester in the image with
respect to its correct classification. However, for the stamped image
(Fig. 1b), the saliency map shows a very misleading hotspot that
highlights the hay instead of the trigger that causes the trojaned
model to misclassify to the desired target label. Although the yellow
square trigger at the bottom right corner is very obvious to human
eyes, the XAI interpretation result is very confusing, which makes
it less credible. This raises significant concerns about the use of
XAI methods for model debugging to reason about the relationship
between model inputs and outputs.

We introduce three quantifiable metrics for evaluating the in-
terpretability of XAI techniques through neural networks trojaned
with different backdoor triggers. These triggers differ in size, lo-
cation, color, and texture and are used to evaluate the identified
regions by XAI methods truly relevant to the output label. Our
approach eliminates the distribution shift problem [14] and applies
to any type of XAI methods. Specifically, the training of trojaned

models is a one-time offline effort. Thereafter, we do not require
model training to evaluate XAI methods’ effectiveness.

We study seven different XAI methods through these evaluation
metrics and evaluate the correctness of their saliency explanations.
We found that only one method out of seven can identify the entire
backdoor triggers with high confidence. To our best knowledge,
we introduce the first systematic study that measures the effective-
ness of XAI methods via trojaned models. Our findings inform the
community to improve the stability and robustness of XAI methods.

2 BACKGROUND AND RELATEDWORK
Trojaning Attacks on Neural Networks. The first trojan attack
trains a backdoored DNN model with data poisoning using images
with a trigger attached and labeled as the specified target label [7,
12]. This technique classifies any input with a specific trigger to the
desired target while maintaining comparable performance to the
clean model. The second approach optimizes the pixels of a trigger
template to activate specific internal neurons with large values and
partially retrains the model [20]. The last approach integrates a
trojan module into the target model, which combines the output of
two networks for triggers that causes misclassification to different
target labels [38]. Various triggers are developed by leveraging
these approaches, such as transferred [12, 41], perturbation [19],
and invisible triggers [18, 32].
Interpretability of Neural Networks. With the popularity of
DNN applications, numerous XAI methods have been proposed
to reason about the decision of a model for a given input [1, 3].
Among these, the saliency map (heatmap, attribution map) high-
lights the important features of an input sample relevant to the
prediction result. We select seven widely used XAI methods that
employ different algorithmic approaches to generate saliency maps.
These methods can be applied to any or specific ML models based
on their internal representations and processing. They are roughly
broken down into two main categories: white-box and black-box
approaches. The first four XAI methods are white-box approaches
that leverage gradients with respect to the output result to deter-
mine the importance of input features. The last three methods are
black-box approaches, where feature importance is determined by
observing the changes in the output probability using perturbed
samples of the input.
(1) Backpropagation (BP) [35] uses the gradients of the input
layer with respect to the prediction result to render a normalized
heatmap for deriving important features as interpretation. Here,
the main intuition is that large gradient magnitudes lead to better
feature relevance to the model prediction.
(2) Guided Backpropagation (GBP) [37] creates a sharper and
cleaner visualization by only passing positive error signals (negative
gradients are set to zero) during the backpropagation.
(3) Gradient-weighted Class Activation Mapping (GCAM) [34]
is a relaxed generalization of Class Activation Mapping (CAM) [44],
which produces a coarse localization map by upsampling a lin-
ear combination of features in the last convolutional layer using
gradients with respect to the probability of a specific class.
(4) Guided GCAM (GGCAM) [34] combines Guided Backpropaga-
tion (GBP) and Gradient-weighted Class Activation Mapping (GCAM)
via element-wise multiplication to obtain sharper visualizations.
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Figure 2: The architecture of ourXAI evaluation framework.

(5) Occlusion Sensitivity (OCC) [43] uses a sliding window with
a stride step to iteratively forward a subset of features and observes
network sensitivity in the output to determine feature importance.
(6) Feature Ablation (FA) [23] splits input features into several
groups, where each group is perturbed together to determine the
importance of each group by observing the changes in the output.
(7) Local Interpretable Model Agnostic Explanations (LIME)
[29] builds a linear model by using the output probabilities from
a given set of samples that cover part of the input desired to be
explained. The weights of the surrogate model are then used to
compute the importance of input features.

3 METHODOLOGY
The idea of model trojaning inspires our methodology to evaluate
the results of XAI methods. Given a trojaned model, any valid
input image stamped with a trigger at a specified area will cause
misclassification at inference time. Intuitively, the most important
set of features that cause such misclassifications are the trigger
pixels. Thus, we expect an XAI method to detect the area around
the trigger on a stamped image.

Fig. 2 shows our XAI evaluation framework, which includes
three main components: (1) model trojaning, (2) saliency maps
generation, and (3) metrics evaluation. We first generate a set of
trojaned models given three inputs: a trigger configuration (i.e., lo-
cation, size, color, shape, and texture), training image dataset, and
neural network model. We then apply the XAI method that we want
to evaluate to build a saliency map to interpret the prediction result
for a given trojaned image on the trojaned model. Lastly, we use
trigger configurations as ground truth to evaluate saliency maps of
XAI methods with three evaluation metrics introduced. We next
discuss each component and introduce evaluation metrics in detail.

3.1 Model Trojaning
The first component, model trojaning, takes three inputs: (a) a set of
trigger configurations (e.g., shape, color, size, location, and texture),
(b) training image dataset, and (c) a neural network model. With the
three inputs, we trojan a model through poisoning attack [7, 12].
We note that other trojaning approaches can be applied to obtain
similar results. Yet, data poisoning enables us to flexibly inject
desired trigger patterns and control a model’s prediction behavior.

Algorithm 1: Model Trojaning through Data Poisoning
Input :Training dataset X, pretrained model F, the number

of iterations T, the number of batches B, poisoning
ratio 𝛼 , trigger pattern ∆, trigger mask M, and
target label yt

Output :Trojaned model F′
1 F′ ← F

2 for t = 1 . . . T do
3 for i = 1 . . . B do
4 // Split the batch for poisoning

5 b← ith batch of X
6 Randomly split b into bc and bp such that

|bp | = |b| ∗ 𝛼 and |bc | = |b| ∗ (1 − 𝛼).
7 // Poison the dataset bp

8 b′p ← [ ]
9 for each sample {x, y} ∈ bp do

10 x′ ← (1 − M) · x + M · ∆
11 b′p ← b′p ∪ {x′, yt}
12 end
13 Update F′ using the poisoned batch b′ = bc ∪ b′p
14 end
15 end
16 return F′

Poisoning Attack. Poisoning attacks [7, 12] involve adversaries
that train a target neural network with a dataset consisting of nor-
mal and poisoned (i.e., trojaned) inputs. The trojaned network then
classifies a trojaned input to the desired target label while it classi-
fies a normal input as usual. Formally, given a set of input images X
which consists of a normal input x and a poisoned (i.e., stamped
with trigger) input x′, a model F′ is trained by solving a supervised
learning problem through backpropagation [30], where x and x′ are
classified to y (true label) and yt (target label) respectively. To detail,
an input image x is stamped with the trigger M · ∆ and becomes a
trojaned image x′, x′ = (1 − M) · x + M · ∆. ∆ is a 3-D matrix, which
represents a trigger pattern, whereas M is a 2-D matrix, represent-
ing a mask with values within the range between [0, 1]. A pixel
xi,j,c would be overridden by ∆i,j,c if the corresponding element
is mi,j = 1, otherwise, it remains unchanged.

Algorithm 1 shows the pseudocode for trojaning a pre-trained
model F through the data poisoning attack. Given the training
dataset X, we iteratively update the training model weights with
B batches, where each batch b is poisoned by stamping the trojan
trigger M · ∆ to the images selected with a poisoning ratio of 𝛼 .
Trojan Trigger Configuration. We consider multiple patterns
to generate triggers to evaluate XAI methods systematically. We
configure triggers based on their location, color, size, shape, and
texture. The configuration supports the manipulation of different
trigger mask M and trigger pattern ∆. For example, to insert a n × n
square trigger at the bottom right corner as shown in Fig. 3, we
first modify the mask M by setting each pixel value within the n × n
square at the bottom right corner to one, and the remaining pixels
are set to zero.We then set the pixel values of∆ at the corresponding
location according to our choice of trigger pattern. For example,
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Figure 3: Illustration of saliencymaps, true anddetected trig-
ger area generated by seven XAI methods.

Figure 4: Trojan triggers for multiple target attacks

we use zero for black color or one for white color and multiple
channels for more colors of desire.

In addition to models trojaned with one trigger for a specific
target label, we also trojan models with multiple target labels to
study how different combinations of previously mentioned patterns
affect the performance of trojaned models and XAI methods. Fig. 4
shows the triggers that we use for trojaning neural network models.
Each row shows eight triggers of size 60×60 attached to the bottom
right corner of an input image using different factors (color, shape,
texture) to cause misclassification to different target labels.

3.2 Saliency Map Generation
With a generated trojaned model from the first component, each
XAI method is used to interpret their prediction result of each
image in the testing dataset X̃ = x1, ..., xÑ. We produce one saliency
map for each testing image. Formally, for a given XAI method
with two input arguments, a trojaned model F′ and a trojaned
input image x′ ∈ Rm×n×c, we generate a saliency map xs ∈ Rm×n×c
in time frame t. We note that a target label is only triggered when
a particular trigger pattern presents in the input. Specifically, for
trojaned models with multiple targets, we stamp one trigger to the
input image with different patterns to cause misclassification to
different target labels. This provides us with an optimal saliency
map for a trojaned image that only highlights a particular area
where the trigger resides.
Finding the Bounding Box. To comprehensively evaluate the
XAI interpretation results and compare them quantitatively under
different trojan contexts, we draw a bounding box that covers the

most salient region interpreted by the XAI method. We extend a
multi-staged algorithm 𝐶𝑎𝑛𝑛𝑦 [5] for region edge detection that
includes four main stages: Gaussian smoothing, image transforma-
tion, edge traversal, and visualization. First, we perform Gaussian
smoothing to remove image noise. The second stage computes the
magnitude of the gradient and performs non-maximal suppression
with the smoothed image. Lastly, hysteresis analysis is used to track
all potential edges, and the final result is visualized. After 𝐶𝑎𝑛𝑛𝑦
produces an edge detection result, we find a minimum rectangle
bounding box to cover all detected edges, as shown in Fig. 3.

Table 1: Definition of evaluation metrics.

Acronyms Definition

IOU Intersection over Union: The overlapped area of bounding boxes
of the true trigger and highlighted by an XAI method divided by the
area of their union.

RR Recovering Rate: The percentage of recovered images that are suc-
cessfully classified as the true label.

RD Recovering Difference: The normalized L0 norm between the re-
covered images and original images.

CC Computation Cost: The average computation time an XAI method
spends to produce a saliency map.

MR Misclassification Rate: The percentage of trigger attached images
misclassified into the target classes.

CA Classification Accuracy: The accuracy of classifying clean images.

3.3 Evaluation Metrics
Given a saliency map xs ∈ Rm×n×c generated by an XAI method
for a trojaned image x′ ∈ Rm×n×c in time frame t, we evaluate the
interpretability results of an XAI method through three questions:

(1) Does an XAI method successfully highlight the trojan trigger
in the saliency map?

(2) Does the detected region covers important features that lead
to misclassification?

(3) How long does it take for an XAI method to generate the
saliency map?

To answer these questions, we introduce three metrics below.
Intersection over Union (IOU). Given a bounding box around the
true trigger area BT and the detected trigger area B′T, the IOU value
is the overlapped area of two bounding boxes divided by the area
of their union, (BT ∩ B′T)/(BT ∪ B

′
T). The IOU ranges from zero to

one. The higher IOU means the better trigger detection. We assess
an XAI method by averaging the IOU of the test images.
Recovering Rate (RR). We observe that a trojaned model may not
rely on the whole trigger area to make misclassification. To address
this observation, given a trojaned input x′ and the saliency map
xs generated by an XAI method, we derive the recovered image x̂
by replacing the pixels within the detected trigger area B′T with the
pixels from the original image x. We then define Recovery Rate (RR),
which complements Recovering Difference (RD) that is defined later
to validate whether the highlighted region is deemed important to
the misclassification.

Recovering rate, 1/̃N∑Ñ
i=1Bool(F(x̂i) = yi), measures the av-

erage percentage of the recovered images classified to their true
labels. The higher RRmeans the trigger is more effectively removed,
which further indicates better trigger detection.
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Figure 5: Illustration of subverting the misclassification
when a trigger region is partially recovered.

Table 2: Pretrained models for ImageNet

Model Layers Parameters Accuracy (%)
Top-1 Top-5

VGG16 16 138,357,544 71.73 90.35
Resnet50 50 23,534,592 75.98 92.95
AlexNet 5 62,378,344 56.54 79.00

Recovering Difference (RD). We study the difference between the
recovered image x̂ of a trojaned image x′ and its original image x
by evaluating the normalized difference using the L0 norm.

We define RD, 1/̃N∑Ñ
i=1 (∥xi − x̂i∥0)/(∥xi∥0), as the average L0

norm. Lower RD means the target XAI method effectively helps to
identify the trigger for removal, such that x̂ better resembles the
original image x. Intuitively, when a trojaned image x′ is recovered
with the pixels from the original image x, the misclassification can
be subverted as illustrated in Fig. 5. This means that the trigger
region can be effectively highlighted by the XAI method.
ComputationCost (CC). We define the CC as the average execution
time spent by a target XAI method for saliency map generation.

Overall, IOU and RD metrics determine whether an XAI method
successfully highlights the trigger. RD metric complements the IOU
when an oversized or undersized detected trigger region causes
a small IOU. On the other hand, the RR metric evaluates whether
the detected region of an XAI method is truly important to the
misclassification.

In addition to the aforementioned metrics, we introduce two
metrics to evaluate the attack effectiveness of trojaned models.
Misclassification Rate (MR). MR is the average number of trojaned
images x′ misclassified to the target label yt by the trojaned model:

1/̃N
Ñ∑

i=1

Bool(F′(x′i) = yt) (1)

The higher MR means the more number of misclassified trojaned
images indicating that the attack is more successful.
Classification Accuracy (CA). CA measures how well the trojaned
model maintains its original functionality:

1/̃N
Ñ∑

i=1

Bool(F(xi) = yi) (2)

where xi is a trigger-free testing image with its true label yi. The
higher CA, the more amount of correctly classified test images.

Table 3: Performance of single target trojaned models

Trigger VGG16 Resnet50 AlexNet
Location Size CA MR CA MR CA MR

corner
20*20 0.70 0.98 0.72 1.00 0.44 0.99
40*40 0.70 0.99 0.71 1.00 0.50 0.99
60*60 0.70 1.00 0.77 1.00 0.50 0.99

random
20*20 0.69 0.91 0.68 0.99 0.42 0.82
40*40 0.70 0.98 0.73 0.99 0.50 0.98
60*60 0.70 0.99 0.74 0.99 0.50 1.00

Table 4: Performance of multiple target trojaned models

Trigger VGG16 Resnet50 AlexNet
Location Pattern CA MR CA MR CA MR

corner
texture 0.69 0.90 0.72 0.98 0.48 0.91
color 0.65 0.99 0.70 0.98 0.41 0.96
shape 0.64 0.92 0.62 0.94 0.44 0.36

random
texture 0.67 0.92 0.70 0.99 0.45 0.73
color 0.67 0.81 0.62 0.86 0.46 0.47
shape 0.67 0.81 0.63 0.87 0.41 0.62

4 EVALUATION
We evaluate seven XAI methods on 18 single target and 18 multiple
target trojaned models with the ImageNet dataset [31], which con-
sists of one million images with 1,000 classes. Table 2 details the
pre-trained models used in our evaluation, such as their number of
layers, parameters, and accuracy. We show the performance of our
trojaned models with single target label and multiple target labels
in Table 3 and Table 4, respectively.

Below, we start by presenting how we trojan different mod-
els. We then provide a detailed discussion on each XAI method’s
performance on the trojaned models through the introduced evalu-
ation metrics. Lastly, we compare the computation cost of the XAI
methods. We conducted our experiments with PyTorch [27] using
NVIDIA Tesla T4 GPU and four vCPU with 26 GB of memory using
Google Cloud platform.

4.1 Trojaning Models
We trojan three image classification models, VGG-16 [36], ResNet-
50 [13] and AlexNet [17], through poisoning attack (Algorithm 1).
We use clean images with their true labels and trojaned images
with the target label to train the models, as described in Section 3.1.
Table 2 details the models and their number of layers, parameters,
and accuracy. We trojaned 36 single and multiple models with
different trigger patterns (color, shape, texture, location, and size).
Single Target Trojaned Models.We build 18 trojaned models by
trojaning each model with a single target attack label using a grey-
scale square trigger of different sizes (20×20, 40×40, 60×60) attached
randomly and to the bottom right corner of an input image. (See
Table 3 for the trojaned model accuracy). We observe that trojaned
models do not significantly decrease CA than the pre-trained models
(See Table 2). Additionally, the models with triggers of larger sizes
located at fixed positions yield higher MR, which is consistent with
the observation of the previous work [20].
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Table 5: IOU and RR of single target trojaned models. (Grey color highlights the XAI method that achieves the best score.)

Intersection over Union (IOU) Recovering Rate (RR)Model Location Size BP GBP GCAM GGCAM OCC FA LIME BP GBP GCAM GGCAM OCC FA LIME
20*20 0.54 0.66 0.26 0.63 0.44 0.42 0.56 0.73 0.88 0.63 0.88 0.65 0.94 0.98
40*40 0.32 0.34 0.17 0.37 0.39 0.56 0.49 0.45 0.40 0.13 0.45 0.34 0.71 0.75corner
60*60 0.27 0.28 0.22 0.37 0.54 0.50 0.43 0.24 0.36 0.24 0.37 0.45 0.64 0.60
20*20 0.53 0.61 0.23 0.55 0.37 0.31 0.36 0.92 0.91 0.51 0.82 0.68 0.68 0.93
40*40 0.46 0.53 0.42 0.62 0.27 0.42 0.35 0.89 0.81 0.58 0.86 0.45 0.53 0.89

VGG16

random
60*60 0.47 0.58 0.23 0.70 0.10 0.38 0.42 0.84 0.82 0.22 0.91 0.09 0.35 0.68
20*20 0.26 0.50 0.16 0.62 0.50 0.40 0.57 0.56 0.67 1.00 0.82 0.93 0.99 0.97
40*40 0.20 0.74 0.59 0.80 0.24 0.65 0.39 0.79 0.91 1.00 0.98 0.34 0.94 0.68corner
60*60 0.64 0.29 0.74 0.29 0.54 0.29 0.50 0.97 0.92 0.92 0.91 0.92 0.92 0.81
20*20 0.27 0.49 0.17 0.51 0.68 0.21 0.31 0.45 0.77 0.97 0.85 0.92 0.46 0.98
40*40 0.40 0.52 0.63 0.60 0.20 0.34 0.43 0.55 0.65 0.91 0.82 0.32 0.67 0.98

Resnet50

random
60*60 0.49 0.55 0.40 0.65 0.11 0.40 0.43 0.71 0.75 0.47 0.87 0.15 0.52 0.69
20*20 0.60 0.39 0.35 0.53 0.55 0.38 0.43 0.98 0.72 0.49 0.82 0.95 0.94 0.86
40*40 0.47 0.37 0.40 0.45 0.39 0.48 0.52 0.73 0.64 0.63 0.64 0.62 0.78 0.86corner
60*60 0.46 0.26 0.18 0.29 0.53 0.43 0.38 0.71 0.40 0.57 0.45 0.72 0.69 0.60
20*20 0.57 0.53 0.02 0.08 0.36 0.32 0.39 0.88 0.86 0.44 0.36 0.78 0.78 0.91
40*40 0.67 0.59 0.26 0.54 0.28 0.43 0.36 0.94 0.87 0.61 0.73 0.62 0.68 0.88

AlexNet

random
60*60 0.74 0.61 0.15 0.57 0.23 0.23 0.42 0.98 0.85 0.40 0.69 0.55 0.52 0.64

Table 6: IOU and RR of multiple target trojaned models. (Grey color highlights the XAI method that achieves the best score.)

Intersection over Union (IOU) Recovering Rate (RR)Model Location Pattern BP GBP GCAM GGCAM OCC FA LIME BP GBP GCAM GGCAM OCC FA LIME
texture 0.54 0.57 0.26 0.62 0.70 0.63 0.45 0.89 0.69 0.44 0.70 1.00 0.49 1.00
color 0.67 0.67 0.57 0.68 0.62 0.54 0.66 0.91 0.89 0.76 0.86 0.96 0.86 0.99corner
shape 0.45 0.39 0.29 0.54 0.64 0.64 0.18 0.63 0.49 0.52 0.61 1.00 0.95 1.00
texture 0.50 0.65 0.54 0.69 0.42 0.47 0.30 0.79 0.81 0.83 0.85 0.85 0.81 1.00
color 0.50 0.56 0.53 0.60 0.41 0.45 0.57 0.82 0.88 0.89 0.93 0.88 0.90 1.00

VGG16

random
shape 0.32 0.75 0.15 0.48 0.36 0.29 0.17 0.75 0.75 1.00 0.25 0.75 0.75 0.75
texture 0.48 0.58 0.15 0.65 0.70 0.64 0.37 0.86 0.72 0.96 0.82 1.00 0.86 1.00
color 0.18 0.43 0.14 0.58 0.52 0.41 0.70 0.65 0.59 0.84 0.70 1.00 0.99 0.96corner
shape 0.29 0.38 0.14 0.52 0.64 0.54 0.17 0.87 0.63 0.89 0.79 1.00 0.97 1.00
texture 0.34 0.57 0.27 0.66 0.30 0.18 0.21 0.81 0.92 0.97 0.89 0.81 0.81 1.00
color 0.29 0.52 0.30 0.57 0.41 0.45 0.38 0.56 0.73 0.93 0.85 0.80 0.85 0.96

Resnet50

random
shape 0.29 0.34 0.30 0.48 0.38 0.37 0.17 1.00 0.14 0.86 0.43 0.86 0.86 0.86
texture 0.38 0.29 0.45 0.48 0.70 0.40 0.37 0.52 0.21 0.18 0.43 1.00 0.93 1.00
color 0.54 0.38 0.33 0.49 0.67 0.40 0.66 0.92 0.81 0.64 0.89 0.97 0.99 0.97corner
shape 0.46 0.27 0.29 0.42 0.59 0.44 0.18 0.74 0.41 0.26 0.35 0.85 0.83 1.00
texture 0.47 0.42 0.26 0.43 0.42 0.45 0.18 0.69 0.35 0.46 0.43 0.46 0.53 1.00
color 0.34 0.47 0.06 0.35 0.38 0.30 0.32 0.81 0.64 0.44 0.47 0.61 0.61 0.97

AlexNet

random
shape 0.60 0.40 0.23 0.38 0.35 0.40 0.13 0.85 0.63 0.39 0.61 0.78 0.85 0.97

Multiple Target Trojaned models.We additionally trojan each
model with eight target labels using triggers with a different texture,
color, and shape and construct a total of 18 trojaned models (See
Table 4 for the trojaned model accuracy). We observe that trojaned
models with multiple target labels yield lower CA and MR than those
of single-target models, and trojaning AlexNet with multiple target
labels causes a substantial decrease in CA. Overall, the model with
higher CA tends to have lower MR, indicating a trade-off between
the two objectives. Besides, models trojaned with triggers at a fixed
location generally have higher CA and MR, which demonstrates
neural networks better recognizes the features at a specific location.

4.2 Effectiveness of XAI Methods
We draw 100 testing samples from the validation set of ImageNet
and use the images that are correctly classified and can be trojaned
successfully to evaluate Intersection over Union (IOU), Recovering
Rate (RR), and Recovering Difference (RD) of seven XAI methods
on 18 single target trojaned models and 18 multiple target trojaned

models. We ensure that the attached trigger changes an image’s true
classification; therefore, we expect that the XAI methods should
highlight the trigger.
Intersection over Union (IOU). Table 5 Columns 4-10 show the
IOU scores of XAI methods on 18 models trojaned with one target
attack label. The higher the IOU score, the better the result. We
highlight the XAImethod that yields the best score for each trojaned
model with the grey color. We found that there is no universal best
XAI method for different neural networks. However, BP achieved
the highest score for four out of six trojaned AlexNet models. On
the other hand, Table 6 Columns 4-10 present the IOU results of 18
models trojaned with eight target labels using specifically crafted
triggers (i.e., texture, color, and shape). Although there is no clear
winner among XAI methods, GGCAM and OCC look more promising
than other XAI methods. It is worth noting that three forward
based methods (OCC, FA, and LIME) achieve a higher IOU value
when stamping the trigger at the bottom right corner compared to
stamping the trigger at a random location.
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Figure 6: The recovering difference (RD) metric for different XAI methods applied to three neural network architectures
(VGG16, ResNet50, and AlexNet): (a)-(c) are single target trojaned models, and (d)-(f) are multiple target trojaned models. RD
scores increase with trigger size, indicating that XAI methods are not effective in detecting large triggers.

Recovering Rate (RR). Table 5 Columns 11-17 present RR scores
of XAI methods on the single target trojaned model. Higher RR
scores mean better interpretability results. We found that forward-
based XAI methods (OCC, FA and LIME) gives better metrics for small
triggers, and LIME outperforms the other XAI methods for eight out
of 18 trojaned models. For multiple target trojaned models, Table 6
Columns 11-17 presents the RR scores. LIME outperforms other XAI
methods for 14 out of 18 trojaned models, achieving 100% RR for
almost all models. Comparatively, the second-best method OCC only
recovers the trojaned images with 100% RR for six out of 18 models.
Recovering Difference (RD). Fig. 6 shows the average RD scores of
XAI methods; the lower RD score means the better interpretability
result. Fig. 6a- 6c present RD scores of single target trojaned models,
and Fig. 6d- 6f show the RD scores of multiple target trojanedmodels.
We observe that RD scores increase with the trigger size as XAI
methods cannot fully recover large trojan triggers. For multiple
target trojaned models, RD scores are much smaller than those of
trojaned with single target trojaned models as the former uses
smaller size triggers (i.e., 20×20).

4.3 Detailed Evaluation Results
We discuss our key findings on evaluation metrics of each XAI
method presented in Table 5 and Table 6.
Backpropagation (BP). We found for BP that both IOU and RR
scores increase alongwith an increase in the trigger size for ResNet50
and AlexNet models except when the trigger is at the bottom right
corner for AlexNet models. Our further investigation reveals that
detected regions for VGG16 models only surround trigger edges
when the trigger size increases. In contrast, the detected regions
for ResNet50 and AlexNet models cover the trojan trigger at the
bottom right corner, as illustrated in Fig. 7. The recovered image
may still be classified as the target label for VGG16 models trojaned
with large triggers. This finding implies that the detected region
for VGG16 with large triggers is not relevant enough to subvert
the misclassification. Noteworthily, in the example shown in Fig. 7

for AlexNet, the recovered image still cannot be classified to the
correct label even with near-perfect trigger detection when a model
is trojaned with a small trigger because the unrecovered part still
causes misclassification.
Grad-CAM (GCAM). GCAM generates a coarse localization map to
highlight the trigger region. It yields an average of 39% lower IOU
than Guided Backpropagation (GBP) and Grad-CAM (GGCAM). How-
ever, it achieves low RD, on average 0.01 for single target models and
0.001 for multiple target models, and high RR, on average greater
than 0.88 for Resnet50 models. This is because the detection region
completely covers the entire trigger region. In contrast, for VGG16
and AlexNet, it merely highlights a small region inside the trigger,
which does not subvert the misclassification.
Guided Grad-CAM (GGCAM). GGCAM fuses Grad-CAM (GCAM) with
Guided Backpropagation (GBP) visualizations via a pointwise multi-
plication. Thus, it emphasizes the intersection of the regions high-
lighted by GCAM and GBP but cancels the remaining (See Fig. 3). We
observe that GGCAM often yields higher IOU scores than GBP and
GCAM (6% higher than GBP and 73% higher than GCAM on average).
Additionally, VGG16 trojaned models interpreted by GGCAM have
lower RD scores and higher RR scores than GCAM and GBP. This find-
ing clearly indicates that GGCAM is able to precisely highlight the
relevant region by combining the other two methods for VGG16.
Occlusion (OCC) and Feature Ablation (FA).We observe that OCC
and FA perform higher IOU, higher RR, and lower RD with fixed-
position triggers compared to randomly stamped triggers. The
reason is that both methods require a group of predefined features.
OCC uses a sliding windowwith a fixed step size, and FA uses feature
masks that divide the pixels of an input image into n × n groups.
Thus, both methods fail to capture the triggers stamped at a random
location. Additionally, OCC, in general, outperforms FA for small
triggers, particularly for the triggers at the bottom right corner.
This is because OCC uses a sliding window, which is more flexible
in determining relevant feature groups.
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Figure 7: An illustration of Backpropagation (BP) for trigger
detection that fails to thoroughly highlight the entire trig-
ger region when the trigger size increases. The trigger still
persists and causes misclassification though we attempt to
recover the detected trigger region fully.

LIME. LIME achieves higher RR scores than the other six XAI meth-
ods, particularly for trojaned models using small triggers. Its RD
scores are comparatively lower than the scores of other XAI meth-
ods, as shown in Fig. 6. This indicates that it is able to highlight
small triggers accurately. Indeed, it often correctly detects the whole
trigger region, i.e., IOU equals one. For example, Fig. 3 shows the
detected part of the model using a trigger size of 40 × 40 that per-
fectly matches the trigger area. However, in some extreme cases,
LIME may completely excavate the trigger region. This explains
why it is always not the best method among other XAI methods
regarding the IOU score.

4.4 Efficiency Analysis of XAI Methods
The computation time of each of the XAI methods mainly depends
on the trojaned models. Fig. 8 shows the average computation time
to generate a saliency map by different XAI methods. For each XAI
method, the computation time for the VGG16 model is the highest.
The computation overhead of forward-based approaches (i.e., OCC,
FA, and LIME) is higher than the backward based approaches (i.e., BP,
GBP, GCAM, and GGCAM). Notably, the overhead for FA is the highest,
taking more than 75 seconds to interpret VGG16models. The reason
is that forward-based approaches use many perturbed inputs to
interpret the prediction result, and backward-based approaches
require one input pass to the model. The computation overhead
of GGCAM is roughly equal to the sum of GBP and GCAM as it uses
their results for interpretation. Lastly, the overhead of GBP is 0.01
secs lower than BP. This is because GBP only passes non-negative
signals during backpropagation.

5 LIMITATIONS AND DISCUSSION
Our experiments show that even after the trojan trigger pixels are
substantially replaced with the original image pixels, the remaining
pixels may still cause misclassification (See Fig. 7). This means using
XAI methods for input purification against trojan attack [8, 9] is

Figure 8: The forward-based methods (OCC, FA and LIME) in-
cur much more computation cost than those of backward-
based methods (BP, GBP, GCAM, and GGCAM).

still a challenging process because XAI methods have limitations
for perfect trojan trigger detection.

In the saliency map generation stage (Section 3.2), we leverage
the popular𝐶𝑎𝑛𝑛𝑦 [5] edge detection algorithm to identify the most
salient region and draw a bounding box to cover the detected pixels.
Yet, our approach is limited to single trigger detection as we acquire
a bounding box to surround all detected edges. To handle multiple
triggers, we will use object detection algorithms such as YOLO [28]
to capture multiple objects highlighted by the XAI methods.

Specific XAI methods such as OCC and FA require users to specify
input parameters for better interpretation results. While we use
default parameter settings of each XAI method for evaluation, dif-
ferent combinations of parameters could yield better interpretation
results than our reported results.

Lastly, we mainly assess the XAI methods on the image datasets.
In the future, we plan to extend our system to other domains such as
security and natural language processing, in which we will develop
additional metrics to evaluate the effectiveness of XAI techniques.

6 CONCLUSIONS
We introduce a framework1 for systematic automated evaluation
of saliency explanations that an XAI method generates through
models trojaned with different backdoor trigger patterns. We de-
velop three evaluation metrics that quantify the correctness of XAI
methods’ interpretability without human intervention using trojan
triggers as ground truth. Our experiments on seven state-of-the-art
XAI methods against 36 trojaned models demonstrate that meth-
ods leveraging local explanation and feature relevance often fail to
identify trigger regions, and a model-agnostic technique is able to
reveal the entire trigger region. Our findings with both analytical
and empirical evidence raise concerns about the use of XAI meth-
ods for model debugging to reason about the relationship between
inputs and model outputs, mainly in adversarial settings.

1Our code is available at https://github.com/yslin013/evalxai for public use and
validation.
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