
Discovering IoT Physical Channel Vulnerabilities
Muslum Ozgur Ozmen

Purdue University
mozmen@purdue.edu

Xuansong Li∗†‡
School of Computer Science and

Engineering, Nanjing University of
Science and Technology

lixs@njust.edu.cn

Andrew Chu†
University of Chicago

andrewcchu@uchicago.edu

Z. Berkay Celik‡
Purdue University
zcelik@purdue.edu

Bardh Hoxha
Toyota Research Institute

North America
bardh.hoxha@toyota.com

Xiangyu Zhang
Purdue University

xyzhang@cs.purdue.edu

ABSTRACT

Smart homes contain diverse sensors and actuators controlled by
IoT apps that provide custom automation. Prior works showed
that an adversary could exploit physical interaction vulnerabilities
among apps and put the users and environment at risk, e.g., to
break into a house, an adversary turns on the heater to trigger an
app that opens windows when the temperature exceeds a thresh-
old. Currently, the safe behavior of physical interactions relies on
either app code analysis or dynamic analysis of device states with
manually derived policies by developers. However, existing works
fail to achieve sufficient breadth and fidelity to translate the app
code into their physical behavior or provide incomplete security
policies, causing poor accuracy and false alarms.

In this paper, we introduce a new approach, IoTSeer, which ef-
ficiently combines app code analysis and dynamic analysis with
new security policies to discover physical interaction vulnerabili-
ties. IoTSeer works by first translating sensor events and actuator
commands of each app into a physical execution model (PeM) and
unifying PeMs to express composite physical execution of apps
(CPeM). CPeM allows us to deploy IoTSeer in different smart homes
by defining its execution parameters with minimal data collection.
IoTSeer supports new security policies with intended/unintended
physical channel labels. It then efficiently checks them on the CPeM
via falsification, which addresses the undecidability of verification
due to the continuous and discrete behavior of IoT devices.

We evaluate IoTSeer in an actual house with 14 actuators, six
sensors, and 39 apps. IoTSeer discovers 16 unique policy violations,
whereas prior works identify only 2 out of 16 with 18 falsely flagged
violations. IoTSeer only requires 30 mins of data collection for each
actuator to set the CPeM parameters and is adaptive to newly added,
removed, and relocated devices.

∗Also with State Key Laboratory for Novel Software Technology, Nanjing University.
†This work was completed while the authors were at Purdue University.
‡Corresponding authors.

This work is licensed under a Creative Commons Attribution
International 4.0 License.

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9450-5/22/11.
https://doi.org/10.1145/3548606.3560644

CCS CONCEPTS

• Security and privacy→ Formal methods and theory of security;
Vulnerability scanners; • Computer systems organization →
Sensors and actuators.

KEYWORDS

Smart Homes; Security Analysis; Physical Channel Vulnerabilities

ACM Reference Format:

Muslum Ozgur Ozmen, Xuansong Li, Andrew Chu, Z. Berkay Celik, Bardh
Hoxha, and Xiangyu Zhang. 2022. Discovering IoT Physical Channel Vulner-
abilities. In Proceedings of the 2022 ACM SIGSAC Conference on Computer and
Communications Security (CCS ’22), November 7–11, 2022, Los Angeles, CA,
USA. ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/3548606.
3560644

1 INTRODUCTION

With the growing number of IoT devices co-located in an environ-
ment, the interactions among IoT apps cause increasing safety and
security issues [16, 17, 25, 35, 50, 53]. There are two fundamental
sources of app interactions, software and physical. Software inter-
actions occur when IoT apps interact through a common device
defined in their source code. Consider an app that turns on the
lights when smoke is detected and another app that locks the door
when the lights are turned on. These apps interact through a com-
mon light device (smoke−−−−−→ light-on light-on−−−−−−→ door-locked) and makes
residents get trapped during a fire.

Physical interactions are another notable (and stealthier) threat;
an app invokes an actuation command, and a sensor detects the
physical channel influenced by this command, triggering other apps
that actuate a set of devices. Consider an app that turns on the heater
and another app that opens the window when the temperature ex-
ceeds a threshold. These apps interact through the temperature
channel (heater-on∼∼∼∼�temp.

window-open). An adversary who exploits
the heater controller app can stealthily trigger the window-open com-
mand and break into the house when the user is not home.

Discovering software and physical interactions has received in-
creasing interest from the security community since they enable
an adversary to indirectly gain control over sensitive devices and
put the user and environment in danger. Prior works mainly focus
on identifying software interactions via app source code analy-
sis [10, 11, 14, 15, 17, 18, 37, 46]. These approaches find interacting
apps by matching the device attributes in multiple apps, such as

2415

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3548606.3560644
https://doi.org/10.1145/3548606.3560644
https://doi.org/10.1145/3548606.3560644

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Muslum Ozgur Ozmen et al.

the light-on attribute in the first example. They cannot detect the
physical interactions because the app source code does not state
the physical channels, e.g., the heater’s influence on temperature.

There have been limited efforts to discover physical interactions.
These works mainly (1) use pre-defined physical channel mappings
between commands and sensor events [5] and (2) leverage NLP
and device behavioral models to map the events and commands
of apps [12, 20, 50]. However, these approaches have limited ex-
pressiveness of physical channels, causing two issues. They lead to
over-approximation of physical channels, which are false alarms
(e.g., the system flags the temperature from oven-on and opens the
window, yet the temperature from the oven is not enough to create
a physical channel), and under-approximation of physical channels,
which are the interactions that the system fails to identify (e.g., the
system ignores the motion from robot-vacuum-on).

Recent work identifies physical interactions by collecting run-
time device states and enforces security rules at run-time [21].
However, this approach has three limitations, which limit its effec-
tiveness. (1) It defines rules based on devices’ use cases to prevent
physical interaction vulnerabilities. However, such rules do not
prevent unintended interactions that subvert the intended use of
apps and devices. For instance, a user installs an app that unlocks
the patio door when motion is detected to automate their home
entry process. This system, however, does not prevent unlocking
the patio door even if the motion is detected due to the vacuum
robot’s movements. (2) As a dynamic enforcement system, it cannot
infer the specific command that influences a physical channel at
run-time. For example, when the motion sensor detects motion, it
cannot determine if this motion is from the vacuum robot or hu-
man presence. (3) When a device location changes, it makes wrong
predictions about the app interactions, leading to unnecessarily
enforcing rules and failing to prevent violations. For instance, if
a portable heater is moved away from the temperature sensor, its
influence on temperature measurements decreases. Yet, it would
predict a higher influence and turn the heater off prematurely.

In this paper, we introduce IoTSeer, which builds the joint physi-
cal behavior of IoT apps through code and dynamic analysis, and
validates a set of new security policies to discover physical interac-
tion vulnerabilities. IoTSeer first extracts an app’s commands and
sensor events from its source code. It translates them into physical
execution models (PeMs), which define each app’s physical behavior.
It unifies the PeMs of interacting apps in a composite physical exe-
cution model (CPeM). To maximize CPeM’s fidelity in different smart
homes, it collects device traces to define its execution parameters.
IoTSeer supports new security policies that operate on intended/un-
intended physical channel labels and validates if IoT apps conform
to these policies through falsification. IoTSeer addresses the limi-
tations of prior works with formal physical models of apps, new
security policies, and validation through metric temporal logic.

We applied IoTSeer in an actual house with 14 actuators and six
sensors, automated by 39 apps from popular IoT platforms. We built
the PeMs of 24 actuation commands and six sensor events used in
the app source code and unified them in CPeM. IoTSeer found 16
unique physical interaction policy violations on different groups of
interacting apps. We compared the violations discovered by IoTSeer
with existing works that identify physical interaction vulnerabil-
ities and found that they can only identify 2 out of 16 violations

home-mode = away
Robot Vacuum

Cleaner-Start

Motion Sensor motion-active Turn on Lights
Unlock the Patio Door

Physical
Channel

Motion

App2

App1

Turn on the Heater

App3

motion-active

Figure 1: Illustration of physical interactions: the vacuum

robot is activated when the user is not home, which unlocks

the patio door and turns on the lights and heater.

with 18 false positives. We repeated the experiments in the actual
house and verified that all violations discovered by IoTSeer are true
positives. IoTSeer is adaptive to newly added, removed, and updated
devices and imposes minimal model construction and validation
time overhead. It requires, on average, 30 mins of data collection
for each actuator to set the parameters, and it takes, on average, 21
secs to validate a physical channel policy on four interacting apps.

In this paper, we make the following contributions.
• Translating App Source Code into its Physical Behav-

ior: We translate the actuation commands and sensor events
in the app source code into physical execution models to
define their physical behavior.
• Composition of Interacting Apps: We introduce a novel
composite physical executionmodel architecture that defines
the joint physical behavior of interacting apps.
• Physical Channel Policy Validation: We develop new
security policies with intended/unintended physical channel
labels. We formally validate the policies on CPeM through
optimization-guided falsification.
• Evaluation in an Actual House: We use IoTSeer in a real
house containing 14 actuators and six sensors and expose
16 physical channel policy violations.
• IoTSeer code is available at

https://github.com/purseclab/IoTSeer
for public use and validation.

2 MOTIVATION AND THREAT MODEL

A smart home is composed of a set of apps that monitor and con-
trol sensors and actuators. Apps subscribe to events (e.g., motion-
detected) that invoke their event handler methods, activating actu-
ation commands (e.g., door-unlock). Users install official apps from
IoT markets such as HomeKit [28] and OpenHAB [39], and third-
party apps through proprietary web interfaces. Another trend for
custom automation is trigger-action platforms such as IFTTT [30]
and Zapier [52]. These platforms allow users to use conditional
statements in the form of if/then rules to integrate digital services
with IoT devices. In this paper, we use the term app(s) to refer to
both IoT apps and trigger-action rules.

When an actuation command is invoked, it influences a set of
physical channels measured by sensors. The command then inter-
acts with apps subscribed to those sensor events, invoking other
commands. An adversary can exploit such physical interactions to
indirectly control devices and cause unsafe states.

To illustrate, Figure 1 shows a common smart home with four
devices. The user installs App1 that starts the robot vacuum cleaner

2416

https://github.com/purseclab/IoTSeer

Discovering IoT Physical Channel Vulnerabilities CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

when the home mode is set to away (or at specific times). An adver-
sary can provide users with App2 and App3 that operate correctly in
isolation yet exploit the physical interactions to cause unsafe states.
When motion is detected (the user enters the home), App2 turns on
the lights and unlocks the patio door, and App3 sets the heater to a
specific temperature value.

In this deployment, the user leaves home and sets the homemode
to away, triggering App1 that starts the robot vacuum cleaner. The
movements of the robot vacuum create a physical interaction with
App2 and App3 since the motion sensor detects the robot vacuum.
This results in unlocking the patio door and turning on the lights
and the heater while the user is not at home. The unlocked patio
door may allow a burglar to break in, the turned-on lights may
indicate whether the users are at home or not, and the heater’s
influence on temperature may trigger other apps (e.g., opening the
windows), causing a chain of interactions between multiple apps.

The preceding example shows that the final environment states
do not just depend on individual devices but are a result of the
physical interactions of multiple devices. Each app is individually
safe, yet their unified physical interactions leave users at risk.

2.1 Threat Model

Our threat model is similar to related IoT security works, which
focus on app interaction vulnerabilities [17, 20, 21, 50]. We consider
an adversary whose goal is to execute undesired device actions
(e.g., unlocking the door when the user is sleeping) and cause un-
safe system states. The adversary achieves this goal by creating or
exploiting physical app interactions.

The adversary can conduct two types of attacks, a mass attack
or a targeted attack. In a mass attack, an adversary provides users
with apps operating correctly in isolation yet exploits the physical
interactions among apps to cause unsafe states on a large scale.
The adversary does not target a specific smart home but harms
many users and hurts the trustworthiness of an IoT platform. The
adversary can conduct this attack by (1) distributing apps on IoT
platforms and third-party IoT forums and (2) tricking users into
installing apps via phishing and other social engineering methods.

In a targeted attack, the adversary determines a specific smart
home to exploit its physical app interactions. First, the adversary
discovers an exploitable physical interaction in the target smart
home. For this, the adversary remotely learns the devices and in-
stalled apps by eavesdropping on the commands and sensor events
over network packets and mining their correlations [3, 23]. The
adversary can then wait until the physical interactions naturally
occur and create unsafe states (e.g., the door is unlocked when the
user is not at home) to conduct a physical attack. The adversary
can also leverage vulnerable apps to remotely control a set of com-
mands and cause physical interactions [20, 21, 50]. Through this,
the adversary can stealthily invoke actuation commands through
physical channels even if they cannot directly control them.

The physical interactions might also happen due to the errors
in users’ creation, installation, and configuration of apps. In such
cases, the physical interactions subvert the intended use of IoT
devices, leading to unsafe states. This is because IoT users are
usually uninformed about the implications of app interactions, as
demonstrated by prior works [48, 54].

3 DESIGN CHALLENGES

C1: Correct Physical Interactions. To identify physical interac-
tion vulnerabilities, prior works have used NLP techniques, e.g., the
heater is semantically related to temperature [20], manually crafted
interaction mappings, e.g., heater-on is mapped to the temperature
channel [5], and constructed naive device models, e.g., heater-on
increases temperature by 1°C in 8 hours [50].

These approaches, unfortunately, discover erroneous interac-
tions or fail to discover them due to over-approximating and under-
approximating physical channel properties. Such errors may cause
serious consequences. For instance, when the user is not at home,
they fail to block door-unlock or mistakenly approve window-open.
C2: Unintended Physical Interactions. Prior works define se-
curity rules based on the use cases of devices to prevent physical
interaction vulnerabilities. Such rules do not consider unintended
interactions, which occur beyond the intended use of devices and
apps, and unexpectedly trigger actions in a smart home. For in-
stance, the user uses App2 and App3 in Figure 1 to turn on the light
and heater and unlock the patio door when they enter the home.
However, when the vacuum robot creates motion, it unintentionally
triggers both of these apps and invokes their actions.

Additionally, an actuation command may unintentionally trigger
a security rule and subvert its intended use. For example, prior
works define a rule that states, “The alarm must sound and an
SMS/Push message should be sent to the owner when motion is
detected, and home mode is away” to protect the smart home from
intruders [21]. This rule can be triggered when App1 turns on the
vacuum robot, which would create panic and unnecessarily bring
resources (e.g., police dispatch) to the home.
C3: Run-time Dilemmas. Dynamic systems that examine the
device states at run-time [17, 21] cannot infer the influence of an
exact command on a physical channel. For instance, in Figure 1, it
is unclear to these systems whether the motion is from the vacuum
robot or human presence. This challenge becomes more critical
when multiple devices influence the same physical channel. For
example, if a sound sensor detects the sound from both AC and
dryer, the dynamic systems cannot determine if a single device or
their aggregated influence changes the sound. This makes them
flag incorrect physical interactions.

When an interaction vulnerability is identified, dynamic systems
either block device actions or notify users. However, these responses
could be dangerous. For example, the door-unlock action might be
blocked if there is a fire in the house when the user is not home.
C4: Device Placement Sensitivity. Prior works do not model the
impact of the distance between an actuator and a sensor on physical
interactions. Intuitively, if the distance between an actuator and
sensor increases, the physical influence of a command on sensor
readings decreases monotonically. Thus, when a device’s placement
is changed, the identified interactions may no longer occur, and
there may be new interactions that were not previously identified.

This observation causes wrong predictions with false positives
(incorrect policy violations and unnecessarily enforcing policies)
and false negatives (missing violations and failing to prevent them).
This is critical in smart homes as frequent device placement changes
may occur with lightweight and portable IoT devices.

2417

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Muslum Ozgur Ozmen et al.

Generic PEM
Construction

IoT Apps

w

Static App
Analysis

CPEM

Policy ViolationsFalsification

Physical Channel Policiesu

Sensor
Events

Actuation
Commands

vOff On
O = 0 O = f(X)

Start = 1

Stop = 1

Off On
O = 0 O = f(X)

Start = 1

Stop = 1

Agg On
O = f(X)

Unifying PEMS

CPEM

Setting the CPEM
Parameters

Generic Offline Module Security Analysis ModuleDeployment-specific Module

Figure 2: Overview of IoTSeer’s architecture

4 IOTSEER DESIGN

To discover physical interaction vulnerabilities, we introduce IoT-
Seer, which combines app code analysis and dynamic analysis with
new security policies, and efficiently addresses the C1-C4 chal-
lenges. Figure 2 provides an overview of IoTSeer’s modules.

In the generic offline module (1), IoTSeer first extracts actuation
commands and sensor events of apps from their source code via
static analysis. From this, it builds physical execution models (PeMs)
for each physical channel a command influences and a sensor mea-
sures. Each PeM defines a generic physical behavior of commands
and events in hybrid automata with well-studied generic differential
and algebraic equations.

IoTSeer then unifies the PeMs in a composite physical execution
model (CPeM) to represent the joint physical behavior of interacting
apps. Our composition algorithm considers a set of physical channel
properties (e.g., the aggregation of physical influences) (C1) and
distinguishes the influence of each command (C3).

The offline module delivers PeMs and CPeM that define a generic
physical behavior for devices and their composition on the physical
channels. However, each smart home may contain devices with
different properties (e.g., heater power) and environmental factors
(e.g., furniture and room layout).

To address this, in the deployment-specific module (2), IoTSeer
extends RSSI-based localization [4, 51] to obtain the physical dis-
tance between actuators and sensors. It next collects device traces
and leverages system identification techniques to define the execu-
tion parameters of CPeM. The resulting CPeM defines the physical
behavior of interacting apps for a specific smart home with minimal
data collection and addresses the device location changes (C4).

In the security analysismodule (3), we first develop security poli-
cies to detect unintended physical interactions that cause unsafe and
undesired system states (C2). IoTSeer then extends optimization-
guided falsification to validate if the joint physical behavior of
interacting apps conforms to the identified policies. If IoTSeer dis-
covers a policy violation, it outputs the violation’s root cause with
the interacting apps and physical channels.
Deployment. Our IoTSeer prototype runs in conjunction with the
edge device in a smart home (See Figure 3). However, it could be
implemented as a software service in the cloud or in a local server.

IoTSeer first obtains the IoT apps and runs its generic offline
module (1). It then collects actuator and sensor traces through
the edge device for the deployment-specific module (2). It next
runs its security analysis module and presents users with the policy
violations and their root causes (3).

IoTSeer supports dynamic changes in the smart home, including
added, removed, and updated IoT apps and devices (4). When a
dynamic change occurs, IoTSeer reruns its related modules and

IoT Apps

IOTSEER Edge Device

Mobile App

User
wu

v x

Added, Removed,
Updated Apps/Devices

Figure 3: Usage scenario of IoTSeer

presents users with the changed policy violations and their root
causes. First, if the user installs a new app or device, IoTSeer runs the
generic offline and deployment-specific modules to include the new
apps and devices in the CPeM. Second, if the user removes an app or
device, IoTSeer removes their PeMs and transitions from the CPeM.
Lastly, if an app’s configuration or a device’s placement changes, IoT-
Seer changes the CPeM’s parameters with the deployment-specific
module. After updating the CPeM, IoTSeer runs the security analysis
module to identify policy violations.

4.1 Generic Offline Module

To map an IoT app source code to its physical behavior, IoTSeer re-
quires an app’s events, actuation commands, and trigger conditions
associated with each command. However, IoT platforms are diverse,
and each offers a different programming language for automation.
For instance, IoT platforms such as OpenHAB enable users to write
apps with a Domain Specific Language based on Xbase [39], and
trigger-action platforms such as IFTTT implement if-then abstrac-
tions [30]. To address this, we leverage existing static analysis and
parsing tools for IoT apps [14, 15, 50].

In this way, IoTSeer supports apps from various IoT platforms.
These tools model an app’s life-cycle, including its entry points and
event handlers from its interprocedural control flow graph (ICFG),
and extract (1) devices and events, (2) actuations to be invoked for
each event, and (3) conditions to invoke the actuations. For instance,
given an app “When the temperature is higher than 80°𝐹 , if the AC is
off, then open the window”, IoTSeer obtains the temp > 80 event, the
window-open command, and the AC-off trigger condition.

4.1.1 Constructing PeMs. We translate each command and sensor
event of an app to a PeM expressed with a hybrid I/O automaton.
This process begins by constructing a separate PeM for each physical
channel a command influences, and a sensor event observes with
physics-based modeling. The physics-based modeling integrates a
generic differential or algebraic equation from control theory into
a PeM to model each app’s physical behavior [31, 49, 55]. This
approach is widely used in robotic vehicles [9, 43] (e.g., to predict
RV’s sensor values) and in autonomous vehicles [13] (e.g., to model
the movements of cars and pedestrians).

2418

Discovering IoT Physical Channel Vulnerabilities CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

heater-on

oven-on

Off On
O = 0

On

O = f(X)

t

Start = 1

Stop = 1

O = f(X)

Off On
O = 0 O = f(X)

Start = 1

Stop = 1

Agg

App4
1. //Devices
2. heater h
3. //User Inputs
4. time_on
5. if timer = time_on
6. h.on() 1. //Devices

2. temperature_sensor t
3. window w

4. if temp.increase
5. w.open()

App6

App5
1. //Devices
2. oven o
3. //User Inputs
4. time_on
5. if timer = time_on
6. o.on()

Window.Open0 10 20 30 40 50 60
Time (minutes)

0

0.5

1

1.5

Te
m

pe
ra

tu
re

 In
cr

ea
se

 (F
)

0 10 20 30 40 50 60
Time (minutes)

0

0.1

0.2

0.3

0.4

0.5

0.6

Te
m

pe
ra

tu
re

 In
cr

ea
se

 (F
)

0 10 20 30 40 50 60
Time (minutes)

0

0.5

1

1.5

2

2.5

Te
m

pe
ra

tu
re

 In
cr

ea
se

 (F
)

Sensor Event PEM

Composite Physical Execution Model (CPEM)

Physical Channel
Aggregation

Actuation Command PEM1

2

3

Figure 4: Illustration of PeMs for actuators and sensors, and their CPeM for the unified behavior of three apps (App4, App5, App6).

Determining the physical channels that a command influences
requires collecting actuator and sensor traces from the smart home
since static app analysis does not reveal the commands’ physical
channels. IoTSeer initially considers each command may influence
all physical channels and removes the over-approximated channels
in the deployment-specific module (See Sec. 4.2.2).
PeMs for Actuation Commands. A command PeM defines the
discrete and continuous dynamics of a command. The discrete
behaviors are an actuator’s states (e.g., on/off) for invoking the
command from the app. The continuous behavior is an algebraic or
differential equation that defines its physical behavior.

Formally, each PeM is a hybrid I/O automaton [34] in the form
of Ha = (Q, X, f, →, U, O). Here Q is a set of discrete states, X is a
continuous variable, f is a flow function that defines the continuous
variable’s evolution, (→) defines the discrete transitions, and U/O
defines the input/output variables, as shown in Figure 4- 1 . We
define the discrete states as Q = {on, off}, and discrete transitions
enable switching between them. The continuous variable defines
a command’s influence on physical channels (e.g., temperature in
°F, sound in dB). The flow function acts on the continuous variable,
and the PeM outputs the command’s influence.

We define a separate generic flow function for each physical
channel. They are differential equations for continuous physical
channels such as temperature and algebraic equations for instant
channels such as sound. A flow function takes two parameters as
input, device property, and distance from the actuator and outputs
the actuator’s influence on a physical channel at that distance. These
parameters allow us to use the same flow function for different
actuators that influence the same channel (e.g., heater-on and AC-on)
and the actuators with multiple working patterns (e.g., AC’s modes)
by setting different parameters.

The property parameter describes the characteristics of a device,
such as its operating power. In Sec. 4.2, we show how to set the pa-
rameters based on a specific smart homewith IoTSeer’s deployment-
specific module for precision. The distance parameter quantifies
the command’s influence at different locations (e.g., fan-on’s sound
intensity at 1 and 2 meters away from the fan). We set this parame-
ter as the distance from the actuator to the sensor that measures
its influence (Sec. 4.2). This makes the PeM practical against de-
vice placement changes and enables effortless porting of IoTSeer to
other deployments with different placements.

Example Actuator PeM. We illustrate a PeM for actuators that
influences the temperature channel. The flow function for com-
mands that influence temperature uses the partial differential heat
diffusion equation [26], (𝜕T)/(𝜕t) = 𝛼 (𝜕2T)/(𝜕x2) with boundary
conditions. Here, T is the environment’s temperature (°K), x is the
distance parameter (m), 𝛼 is the thermal diffusivity constant (m2/s),
and the boundary conditions define the actuator’s temperature.

Given the device property parameter and the distance to the
temperature sensor, the PeM outputs the command’s influence on
the temperature sensor’s measurements over time.
PeMs for Sensor Events. We define an event’s PeM as a hybrid
I/O automaton (Hs) with a single state, Q = {on}, and a timed (t) self
transition on

t−→ on, where t is the frequency that a sensor samples
its measurements. Figure 4- 2 depicts a sensor event’s PeM that
only measures physical channels.

The sensor event PeM takes a sensitivity-level parameter, which
defines the minimum amount of change in the physical channel
(threshold) for a sensor to change its reading. We set the sensitivity
level based on the sensors installed in the smart home. A threshold
function outputs a sensor reading indicating if the physical channel
level is equal to or greater than the sensitivity level. If the sensor
measures boolean-typed values (e.g., motion), the PeM outputs a bit
indicating “detected” or “undetected” events. If the sensor makes
numerical readings (e.g., temperature), it outputs numerical values.

Example Sensor PeM.We illustrate a PeM for a sound sensor
that outputs boolean-typed measurements. The threshold func-
tion of sound sensor events is defined as f(sp) = 1 if sp > th, 0

otherwise. where sp is the ambient sound pressure and th is the
sensor’s threshold (sensitivity level). Here, the PeM outputting 1
means “sound-detected” and 0 means “sound-undetected.”
Built-in PeMs. Using the above approach, we have integrated
into IoTSeer a total of 24 actuator command PeMs (e.g., heater-on,
door-unlock) that influence a total of six physical channels, namely
temperature, humidity, illuminance, sound, motion, and smoke, and
six sensor event PeMs that measure these channels. The PeMs can be
easily extended to define the physical behavior of various devices
since their flow functions are generic for a family of devices that
influence the same physical channel.

The PeMs allow us to obtain the physical behavior of popular
apps used in diverse IoT platforms.

2419

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Muslum Ozgur Ozmen et al.

Algorithm 1 Composition of Physical Behavior of Apps
Input: Actuation Command PeMs (Ha), Sensor Event PeMs (Hs), Apps (Lapp)
Output: CPeM (M)
1: function Composition(Ha, Hs,Lapp)
2: for Hi ∈ Ha , Hj ∈ Hs do
3: Unify(Hi, Hj) ⊲ Command to sensor event transitions

4: end for

5: for appi ∈Lapp do

6: ⟨L𝑖
command, L

𝑖
condition, L

𝑖
event ⟩ = StaticAnalysis(appi)

7: for s ∈ L𝑖
event , a ∈ L𝑖

command do

8: if a.condition = true then

9: Unify(Hs, Ha) ⊲ Sensor event to command transitions

10: end if

11: end for

12: end for

13: for a1 ∈Lcommand do

14: if a1 ∈L𝑖
event and ai .condition = true then

15: Unify(Ha1 , Hai) ⊲ Software channel transitions

16: end if

17: end for

18: for Hj ∈ Hs do
19: Agg(Hj .U) ⊲ Aggregate inputs of the sensor events

20: for Hk ∈ Hs do
21: if Hj .O = Hk .U then Dep(Hj → Hk) ⊲ Dependency

22: end if

23: end for

24: end for

25: returnM =
⋃ (Ha, Hs) ⊲ Return CPeM

26: end function

4.1.2 Unifying the Physical Behavior of Apps. After we build the
PeMs for sensors and actuators to define the behavior of each app,
we build a separate CPeM to represent their joint behavior.

Algorithm 1 presents our approach to CPeM construction. The
algorithm starts with identifying the interacting apps by matching
the physical channels of sensor events and commands. First, if a
sensor measures a physical channel that a command influences, we
add a transition from the command PeM (Ha) output to the sensor
event PeM (Hs) input (Lines 2-4). Second, software and physical
channels can trigger the event handler of apps and invoke com-
mands if the apps’ conditions are satisfied. For physical channels,
we add a transition from a sensor event PeM (Hs) to a command
PeM (Ha) (Lines 5-12). For software channels, we add a transition
from a command PeM (Ha1) to another command PeM (Ha2) if an
app invokes a2 when a1 occurs (Lines 13-17). The transitions are
expressed with a UNIFY operator, which defines the interactions
as a transition, Ha∼∼�Hs, Hs−→Ha, and Ha−→ Ha. Here, ∼∼� is a physical
influence on a channel, and −→ is a software channel.

Figure 4- 3 shows the CPeM of three apps (App4, App5, App6) that
automate a heater, oven, window, and temperature sensor. When
App4 invokes heater-on and App5 invokes oven-on, IoTSeer identifies
heater-on’s and oven-on’s temperature PeMs interact with tempera-
ture sensor of App6. IoTSeer adds the below transitions to the CPeM:
Ha {heater-on} ∼∼� Hs {temp-increase}
Ha {oven-on} ∼∼� Hs {temp-increase}

Another transition from the temperature sensor event PeM to
window-open PeM is then added because when the sensor measures
an increased temperature, App6 opens the window.
Hs {temp-increase} −→ Ha {window-open}

Addressing Aggregation and Dependency. A sensor measures
the accumulated influence of multiple commands. For this, we
define an aggregation operator (AGG), which combines UNIFY(Ha, Hs)

operators so that a sensor event PeM takes the aggregated output of
command PeMs as input (Lines 18-19). Turning to Figure 4, IoTSeer
adds Agg(H1a{heater-on}, H2a{oven-on}) ∼∼� temp-increase transition
to the CPeM. The AGG operator’s output is defined based on the
physical channel’s unit. It is the sum of the command PeM outputs,∑n

i=1 UNIFY(Hia, Hs) , for linear scale channels (e.g., temperature) [55].
The channels in the log scale (e.g., sound) are aggregated after being
converted to a linear scale, 10 × log10 (

∑n
i=1 10

Hia/10) [36].
Another property of physical channels is that a physical channel

(pj) may depend on another channel (pi) if a change in pi affects pj.
Due to dependencies, a sensor event PeM’s output may influence
another sensor event PeM’s readings. The generic PeMs allow us
to easily identify dependencies by iteratively taking each sensor
event PeM and checking if it is used in the threshold function of
another sensor event (Lines 20-23). For instance, when ambient
temperature increases, the air-water capacity increases and affects
the humidity sensor’s readings [33]. To address this, we add a
DEP(His → Hjs) transition from the temperature sensor event PeM
output (His) to the humidity sensor event PeM input (Hjs).

4.2 Deployment-specific Module

The actuation command PeMs require distance and device property
parameters, and the sensor event PeMs require a sensitivity level
parameter. We set these parameters based on the devices installed
in the smart home to ensure the CPeM precisely models the physical
behavior of the apps.

4.2.1 Setting the Distance Parameter. To determine the distance
parameter in PeMs, we initially considered leveraging a recent IoT
device localization tool, Lumos [45]. Lumos localizes IoT devices
with high accuracy by requiring the user to walk around the smart
home with a mobile phone. However, this approach could be incon-
venient for smart home users since it requires manual effort.

To address this, we integrate received signal strength intensity
(RSSI)-based distance estimation techniques [4, 51] into IoTSeer.
Such techniques leverage the inverse proportion between distance
and RSSI to estimate the distance between two devices. Although
this approach may incur an error in the distance parameter, our
evaluation shows that the impact of such errors on IoTSeer’s policy
violation identification is minimal (See Sec. 5).

4.2.2 Setting the Device Property Parameter. We consider two op-
tions for setting the device property parameters based on the in-
stalled devices. The first is using the installed device’s datasheets.
Yet, in our prototype implementation, we realized that the datasheets
might be incomplete, or a discrepancy could occur, for example,
due to device aging [44]. To address this, we extend System Identi-
fication (SI), a learning-based method commonly used by control
engineers to estimate parameters or models of physical processes
using experimental data traces [32, 42].

SI allows us to estimate device property parameters that ensure
the CPeM achieves high fidelity with actual devices. This process
requires fewer traces than the traditional application of SI as we
only estimate parameters instead of complete equations (See Sec. 5).
We particularly use (𝜏, 𝜖)-closeness [2] as the fidelity metric. (𝜏, 𝜖)-
closeness determines the difference between two traces in their
timing (𝜏) and values (𝜖), where 𝜖 is referred to as deviation score.

2420

Discovering IoT Physical Channel Vulnerabilities CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

Table 1: Descriptions of intent-based policies to discover physical channel vulnerabilities in Figure 5.

ID
∗

Formal Representation
†

Policy Description Security Goal

G1 □(imp(⟨UnInt, p⟩) ≤ th) An actuation command’s influence on a physical channel must not Prevent attackers from creating and exploiting
unintentionally trigger an app’s sensor event and invoke its device actions. individual unintended physical interactions.

G2 □(imp(⟨UnInt1, p⟩, . . . , ⟨UnIntn, p⟩) ≤ th) Multiple commands’ aggregated influence on a physical channel must not Prevent attackers from creating and exploiting
unintentionally trigger an app’s sensor event and invoke its device actions. aggregated unintended physical interactions.

G3
□(imp(⟨Int1, p⟩ . . . ⟨Intk, p⟩) < th) → □(imp(⟨Int1, p⟩, If commands’ intended influences do not trigger an app’s sensor event, their Prevent attackers from bypassing intended

. . . , ⟨Intk, p⟩, ⟨UnInt1, p⟩, . . . , ⟨UnIntn, p⟩) < th) aggregation with other commands’ unintended influences must not trigger it. physical interactions.

∗ The IDs correspond to the vulnerabilities in Figure 5 (G1 for (a), G2 for (b), and G3 for (c))
† imp() denotes an actuation commands’ labeled influence on a channel p. Multiple channels in imp denotes aggregated influences. th denotes a sensor’s sensitivity.

To apply this approach in a smart home, IoTSeer individually
activates each actuator and collects sensor measurements. It next
runs their PeMswith a device property parameter and obtains sensor
traces. It computes the (𝜏, 𝜖)-closeness between the actual device
and PeM traces. It conducts a binary search on the device property
parameter to obtain the optimal value that minimizes the deviation
score. Using real device traces to determine the device property
parameters ensures that the impact of environmental conditions
(e.g., furniture) on sensor readings is integrated into the CPeM.

From the collected actual device traces, IoTSeer also determines
the set of physical channels that a command influences in the smart
home. IoTSeer checks if a command does not change the sensor
measurements or if its influence is statistically indistinguishable
from environmental noise. In such a case, IoTSeer removes the PeMs
of those commands from the CPeM.

4.3 Security Analysis Module

We first identify intent-based policies to detect unintended app
interactions and device-centric policies to detect the vulnerabilities
intended interactions present (Sec. 4.3.1). IoTSeer then leverages fal-
sification to validate the identified policies on the CPeM (Sec. 4.3.2).

4.3.1 Identifying Physical Channel Policies. To properly designate
the circumstances under which the physical interactions are a vul-
nerability or feature, we define intended and unintended labels.

We define the physical channel between an actuator and an
app as intended if the app is installed to be triggered from that
command’s influence. For instance, consider a user that installs an
app that turns on the AC when the temperature exceeds a threshold.
If the temperature from the oven triggers this app, the channel
between oven-on and the app is intended, as the oven causes the
temperature to exceed the threshold defined by the user.

We define a physical channel between an actuator and an app as
unintended if it is unplanned by a system or undesired by a user.
For instance, consider a user that installs an app with the goal of
unlocking the patio door with the motion from her presence. If
the motion from the vacuum robot triggers this app, the channel
between robot-vacuum-on and the app is unintended, as unlocking
the patio door due to the vacuum robot is not desired by the user.
Intended/Unintended Label Generation. IoTSeer automates gen-
erating the interaction labels based on the use cases of apps. It also
allows users to change the labels as their needs dictate.

To generate the labels, IoTSeer first checks whether the intended
use of an app is related to a specific activity. IoTSeer leverages
SmartAuth [47], an NLP-based technique that extracts the activity
related to an app from its description.

A1 A2S
UnInt App

(a) Unintended Individual Interaction

(b) Unintended Aggregated Interaction

A1

AN+1SUnInt
App

AN

A1

AN+1S
UnInt App

AN-1

(c) Unintended Aggregation Bypass

AN

IntAN S AN+1

Int

Figure 5: Intent-based physical channel vulnerabilities (A is

an actuation command, and S is a sensor event).

Consider an app that states “open the windows when you are
cooking” in its description, and the app is triggered when the tem-
perature sensor’s readings exceed a threshold. SmartAuth outputs
that this app is related to the cooking activity. IoTSeer takes the
app’s activity and checks whether any of the actuators installed in
the smart home are semantically related to the activity. For this,
IoTSeer uses Word2Vec representations to compute the semantic
distance between the activity and the commands. It then assigns
intended (Int) label to the commands with a distance lower than
a threshold and assigns unintended (UnInt) labels to others. For
instance, the cooking activity is semantically related to oven-on and
cooker-on commands, and thus, IoTSeer assigns Int to them.

If an app’s description does not indicate an activity or none of the
commands are semantically related to the activity, IoTSeer assigns
the labels based on the apps’ sensor events. The apps conditioned
on motion or sound sensors’ events are used to detect the presence
of users and intruders in smart homes. For instance, App2 in Sec. 2,
which unlocks the patio door and turns on the lights when motion
is detected, is used to be triggered with user presence. IoTSeer
assigns UnInt label to all commands for such apps because only the
influences from users and intruders are intended for them.

The apps conditioned on temperature, humidity, smoke, and
illuminance channels are installed to be triggered when the phys-
ical channel’s state reaches a specific condition. For instance, an
app that turns on the AC when the temperature is higher than a
threshold controls the AC based on the ambient temperature level.
IoTSeer assigns Int label to all commands for such apps because
their intended use only depends on the physical channel conditions,
regardless of which commands influence them.
Intent-based Policies. Based on generated labels, we define three
intent-based policies, as shown in Figure 5, which are used to iden-
tify unintended physical interactions that create undesired and

2421

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Muslum Ozgur Ozmen et al.

Table 2: Example device-centric policies.

ID Policy Description Formal Representation

DC2
When the home is in the away mode,

□(mode-away→ window-close)
the window must be closed.

DC3
A device must not open, then close and

□¬(on ∧#3[0,t] (off ∧#3[0,t]on))then reopen (actuation loop) within t seconds.

DC5
The alarm must go off within t seconds

□(smoke-detected→ 3[0,t]alarm-on)after smoke is detected.

DC6
The main door must not be left

3[0,t]door-lockunlocked for more than t seconds.

DC9
The door must always be locked and lights

□(mode-away→ door-lock ∧ light-off)
must be off when the home is in the away mode.

unsafe system states. We present the security goal of each policy
and its expression with Metric Temporal Logic (MTL) in Table 1.
We validate the policies on the CPeM in the next section.

The first policy, G1, unintended individual interaction, states
that an actuation command’s unintended influence on a physi-
cal channel must not trigger an app’s sensor event and invoke its
device actions (Figure 5(a)). For instance, the robot vacuum’s mo-
tion must not trigger an app that unlocks the patio door when a
motion-detected event occurs. This is because an adversary who
can invoke the start robot vacuum action (e.g., through a vulnerable
app) can exploit this interaction to indirectly unlock the patio door.

The second policy, G2, states the aggregated influence frommulti-
ple commands must not unintentionally trigger an app and invoke
its device actions (Figure 5(b)). Although a command’s individual
influence may not trigger an app, its aggregation with another com-
mand’s influence may trigger it. For example, the aggregated sound
of AC-on and dryer-on must not trigger an app that sounds an alarm
when the sound-detected event occurs, and the home mode is away.

The last policy, G3, states if the commands’ intended influences
do not trigger an app’s sensor event, their aggregation with other
commands’ unintended influences must not trigger it (Figure 5(c)).
For instance, if the light bulb’s Int influence on illuminance does
not create a light-detected event and trigger apps, its aggregation
with the TV’s UnInt influence must not trigger the apps as well.

These unintended physical interactions, by definition, are not
features as they are not desired by users. Yet, an adversary can
exploit them to indirectly control devices and cause unsafe states.
Device-Centric Policies.While intent-based policies detect unsafe
states from unintended physical interactions, Int labeled physical
channels can also cause unsafe states. For instance, the heater’s
intended influence on the temperature sensor may trigger an app
that opens the windows when the temperature exceeds a threshold.

To address such violations, we extend the security rules of previ-
ous works [15, 17, 21] (and enhance them with time-constrained
temporal operators in MTL) to define device-centric policies. We
present a subset of device-centric policies in Table 2. For instance,
the DC5 policy states that physical interactions must not prevent
an alarm from going off within two secs after smoke is detected
(□((smoke > th) → 3[0,2] (alarm = ON)) , where□ is always, and3[0,2]
is eventually within next 2 secs).

4.3.2 Validating Policies on CPeM. After identified policies are ex-
pressed with MTL, IoTSeer executes the CPeM (hybrid I/O automa-
ton) and collects actuator and sensor traces to validate policies.

Algorithm 2 Grid-Testing
Input: CPeM (MHa,Hs) with command PeMs (Ha) and sensor event PeMs (Hs),

parameters (x - distances among devices), inputs (U - apps’ activation times t0 :
Δt : tend), policy (𝜓).

Output: P=(inputs, apps, dist, atime, y)
1: function Grid_Test(Ha, Hs, x, U,MHa,Hs ,𝜓)
2: for j ∈ Hs , HOP ⊆ Ha do
3: for Different activation times in HOP do
4: if Φ(MHOP,Hs , x, u) ⊭ 𝜓 then

5: P← P ∪ {x, u,Φ(MHOP,Hs , x, u) }
6: end if

7: end for

8: end for

9: return P
10: end function

CPEM

Actuator and
Sensor Traces

Apps’ Activation Times

Off On
O = 0

On

O = f(X)
t

Start = 1

Stop = 1

O = f(X)

Off On
O = 0 O = f(X)

Start = 1

Stop = 1

Agg

Rob.

Rob. < 0

u

v
w

x

MTL Policy (𝝍) Policy Violation

Stochastic
OptimizationRobustness

Computation

Figure 6: Overview of falsification to find policy violations.

At each execution, the CPeM takes apps’ activation times as
input, which is the time when the app invokes its commands and
the command PeM transitions to the “on” state. The CPeM simulates
the unified physical behavior of commands and sensor events and
outputs traces of PeMs. The traces (v, t) are composed of a periodic
timestamp t, and a physical channel value v. Each command PeM’s
v shows how much it influences a channel, and each sensor event
PeM’s v shows its measurements. The traces also include labels
(Int/UnInt) and app IDs of commands/events for root cause analysis.
Policy Validation Challenges. The physical channel values and
the app activation times are continuous; thus, the CPeM’s state
space becomes infinite, which makes formal verification approaches
(e.g., model checking) undecidable on the CPeM [6, 27, 41].

To address this issue, we initially implemented a grid-testing
approach, a commonly applied method for testing CPS and au-
tonomous vehicle software [19, 38, 56]. Grid-testing determines
whether the CPeM satisfies a policy under a finite set of apps’ ac-
tivation times– the times that apps invoke actuation commands.
Algorithm 2 presents the grid-testing approach on the CPeM for pol-
icy validation. We set apps’ activation times as a grid (t0 : Δt : tend)
(Line 3). The algorithm executes the CPeM with a search on activa-
tion time combinations. It then validates a policy on each execu-
tion’s traces from PeMs with a robustness metric (Lines 4-6), where
negative robustness values indicate a policy violation.

However, we found that grid-testing does not scale larger analy-
ses with the increasing number of interacting apps and may miss
policy violations due to input discretization. To address these, we
extend optimization-guided falsification and compare it with grid-
testing in identifying violations and performance overhead in Sec. 5.
Optimization-Guided Falsification. Falsification is a formal anal-
ysis technique that searches for a counterexample to an MTL policy
from a continuous input set [1, 7]. Figure 6 depicts our approach in
leveraging falsification to search for interacting apps that cause a
policy violation on the CPeM.

2422

Discovering IoT Physical Channel Vulnerabilities CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

a

b

c

Sensors

d

e

f

Actuators

1

2

3

4

5

6

7

8

9

10

11

12

Temperature

Heater

Humidity SmokeIlluminance

Sound Motion

Oven

Pressure
Cooker

Coffee
Maker

Dehumidifier

Washer

Dryer

Humidifier 13

TV

Robot
Vacuum

Light Bulb

AC

Garbage
Disposal

13

1

2

6

7

e

11
10

12

12

b

f

c
3

4

5

a d

5
m

3 m

9

8

14 Door Lock
14

Figure 7: Sensor/actuator layout in the actual house.

Specifically, we use an optimization algorithm to search for policy
violations by sampling activation times (1). We then execute the
CPeM and record actuator and sensor traces from PeMs (2). From
the traces, we compute a robustness value that quantifies how close
an MTL formula is to the policy violation (3). Positive robustness
values indicate the policy is satisfied, and negative values indicate it
is violated. The sampler then seeds another input to the CPeMwithin
the ranges (similar to input mutation in fuzzing [24]). The sampler’s
objective is minimizing the robustness to find a policy violation (4).
The termination criteria for input generation is when the policy is
violated or a user-defined maximum number of iterations is met.

1 " P o l i c y V i o l a t i o n " : {
2 " I npu t " : robot −vacuum−on ,
3 " Apps " :
4 " app_a " : e : = t ime r , a : = robo t . vacuum−on ,
5 " app_b " : e : = mot− a c t i v e , a : =patDoor . un lock ,
6 " A c t i v a t i o n Time " : 1 0 ,
7 " D i s t an c e " : 2 ,
8 " P h y s i c a l Channel Va lues " :
9 " t = 10 " : robot −vacuum . move ,
10 " t = 11 " : (UnInt) mot− a c t i v e ,
11 " t = 11 " : patDoor . un lock }

Listing 1: An example output of policy validation.

When IoTSeer identifies a policy violation, it outputs a quintuple,
O = (inputs, apps, dist, atime, v) , that details the policy violation’s
root cause. Here, atime is the activation time of apps, v is Int, UnInt
labeled command PeM and sensor event PeM outputs, and dist is the
distance from actuators to sensors. Listing 1 presents the output of
a policy violation when Appa turns on a robot vacuum and interacts
with Appb that unlocks the patio door when it detects the robot
vacuum’s motion. The output further details the violation occurs
when robot-vacuum-on is activated at minute 10 when it is 2 meters
away from the motion sensor. In Sec. 6, we detail how this output
can be used to mitigate the violation.

5 EVALUATION

We evaluate IoTSeer in a real homewith six sensors and 14 actuators,
as shown in Figure 7. To automate the devices, we study three IoT
app markets, IFTTT, Microsoft Flow, and SmartThings, and install
39 popular apps. We then invoke each actuation command and
collect sensor readings from actual devices in the house for 30 mins
to identify the channels each command influences (See Table 3)1.
1We have consulted our university’s IRB office and got advised that IRB approval is
not required since we do not collect any sensitive information.

Table 3: Physical channels of studied actuators and sensors.

Sensors

Actuator (Actuation Command) Temp. Illum. Sound Hum. Motion Smoke

Marley Baseboard Heater (set(val)) ✓ ✗ ✗ ✓ ✗ ✗
Kenmore AC (set(val)) ✓ ✗ ✓ ✓ ✗ ✗

CREE Smart Light Bulb (on) ✗ ✓ ✗ ✗ ✗ ✗
Instant Pot Pressure Cooker (on) ✓ ✗ ✗ ✓ ✗ ✗
Mr. Coffee Coffee maker (on) ✓ ✗ ✗ ✓ ✗ ✗
Sunbeam Humidifier (on) ✗ ✗ ✗ ✓ ✗ ✗

Easy Home Dehumidifier (on) ✗ ✗ ✗ ✓ ✗ ✗
Whirlpool Clothes Washer (on) ✗ ✗ ✓ ✓ ✗ ✗

Whirlpool Dryer (on) ✓ ✗ ✓ ✓ ✗ ✗
Whirlpool Garbage Disposal (on) ✗ ✗ ✓ ✗ ✗ ✗
Roborock S4 Robot Vacuum (on) ✗ ✗ ✗ ✗ ✓ ✗

Vizio 48” TV (on) ✗ ✓ ✓ ✗ ✗ ✗
Door (unlock) ✗ ✗ ✓ ✗ ✗ ✗

Whirlpool Oven (on) ✓ ✗ ✗ ✓ ✗ ✗

✗ means the command does not influence the physical channel the sensor observes and ✓means
the command influences it.

We built a total of 24 PeMs for channels the commands influence
(number of physical channels the actuators influence in Table 3) and
six sensor event PeMs for the channels they observe (temperature,
illuminance, sound, humidity, motion, and smoke). We also use the
collected sensor readings to conduct SI and tune the CPeM parame-
ters. Lastly, we assign Int/UnInt labels between the commands and
apps based on the apps’ intended uses, as described in Sec. 4.3.1.

We implement grid-testing and our falsification approach using
an open-source temporal logic toolbox, S-TaLiRo [8]. We leverage
S-TaLiRo’s dptaliro function as a subroutine in grid-testing and
staliro function in our optimization-guided falsification to vali-
date MTL policies on the CPeM. We use the staliro function with
simulated annealing by hit-and-runMonte Carlo sampling for input
generation [22]. We use a dynamic programming-based algorithm
to compute the robustness of MTL policies. In grid-testing’s im-
plementation, we consider apps invoke actuation commands at
10-min intervals; thus, the apps’ activation times are set as a grid
to 0 : 10 : 60. In falsification’s implementation, we set the apps’
activation times as continuous ranges, any time in the execution
(0-60), and we define the max number of tests to 100 as we do not
observe a significant change in robustness after 100.

We run the CPeM executions on a laptop with a 2.3 GHz 2-core
i5 processor and 8 GB RAM, using Simulink 10.0.

5.1 Effectiveness

We validate intent-based and device-centric security policies on the
CPeM tuned for our home.

Table 4 presents 16 identified policy violations caused by physical
interactions among seven different groups of devices. We compare
the violations flagged by IoTSeer with prior works that identify
physical interaction vulnerabilities and show they can discover 2
out of 16 violations. We also conduct in-home experiments with
real devices and confirm that all 16 violations are true positives.

5.1.1 Intent-based Policy Violations. IoTSeer identified 14 interac-
tions that subvert the apps’ intended use, causing unsafe states.
Individual Policy (G1) Violations. IoTSeer flagged 10 individual
policy (G1) violations that occur due to the physical interactions
among three groups of devices. First, the motion sensor detects the
presence of the robot vacuum and unintentionally triggers five apps

2423

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Muslum Ozgur Ozmen et al.

Table 4: Policy violations identified by IoTSeer and previous works.

Policy ID App Interactions

Number of

Violation Description

Existing Work

Violations iRuler IoTMon IoTSafe

G1

V1

motion-det.−−−−−−−−−−→ door-unlock

5
Robot vacuum’s motion unintentionally triggers

✗ ✗ ✗

motion-det.−−−−−−−−−−→ light-on
five apps and causes door-unlock, heater-on,robot-vacuum-start motion-det.−−−−−−−−−−→ heater-on

light-on, TV-on and call-user actions.motion-det.−−−−−−−−−−→ TV-on
motion-det.−−−−−−−−−−→ call-user

V2

sound-det.−−−−−−−−−→ light-on
3

Garbage disposal’s sound unintentionally
✗ ✗ ✗garb-disp-on sound-det.−−−−−−−−−→ TV-on triggers three apps and causes

sound-det.−−−−−−−−−→ call-user light-on, TV-on and call-user actions.

V3 TV-on
sound-det.−−−−−−−−−→ light-on

2
TV’s sound unintentionally triggers two

✗ ✗ ✗sound-det.−−−−−−−−−→ call-user apps and causes light-on and call-user actions.

G2 V4

sound-det.−−−−−−−−−→ light-on
3

Aggregated sound from the AC, washer and dryer
✗ ✗ ✗Agg(AC-on, washer-on, dryer-on) sound-det.−−−−−−−−−→ TV-on unintentionally triggers three apps and causes

sound-det.−−−−−−−−−→ call-user light-on, TV-on and call-user actions.

G3 V5 Agg(bulb-on, TV-on) light-det.
−−−−−−−−−→ light-off 1

Aggregated light from the bulb and TV bypasses
✗ ✗ ✗bulb’s intended influence and triggers an

app that turns off the lights.

DC8 V6 sleep-mode-activate sleep-mode−−−−−−−−−→ AC-on temp<th° F−−−−−−−−−→ light-on 1
Temperature decreases due to the AC’s influence and

✗ ✓ ✓
turns on the bulb when the home mode is sleep.

DC9 V7
away-mode-activate away-mode

−−−−−−−−→ vacuum-start motion-det.−−−−−−−−−−→ 1
Temperature increases due to the heater’s influence and

✗ ✓ ✓
heater-on temp>th° F−−−−−−−−−→ light-on turns on the bulb when the home mode is away.

conditioned on the motion-detected event. For instance, this viola-
tion occurs when App17 starts the robot vacuum when the home
mode is set to away, and App27 unlocks the door when motion is de-
tected. Second, the sound sensor detects the garbage disposal’s (V2)
and TV’s (V3) sound, unintentionally triggering apps conditioned
on sound-detected. For example, App9 turns on the garbage disposal
at a user-defined time, and App19 notifies the user when sound is
detected, creating unnecessary panic.
Aggregation Policy (G2) Violations. IoTSeer flagged three ag-
gregation policy (G2) violations among one group of devices. The
sound sensor outputs a sound-detected event due to the unintended
aggregated influence from AC-on, washer-on, and dryer-on. This, in
turn, triggers three apps conditioned on the sound-detected event
and causes light-on, TV-on, and call-user actions.
Bypass Policy (G3) Violations. IoTSeer identified a single bypass
policy (G3) violation. The illuminance sensor measures the aggre-
gated illuminance of light-on and TV-on. The increase in illuminance
triggers App34, turning off the lights. However, App34’s intended oper-
ation is turning off the lights when the daylight is enough to illumi-
nate the environment, which is semantically related to the light-on
action. Therefore, light-on’s influence on App34’s sensor event is
intended, whereas TV-on’s influence is unintended. Since light-on’s
individual influence cannot trigger App34’s light-detected event
but its influence aggregated with the unintended influence from
TV-on triggers it, the app’s intended use is bypassed.

5.1.2 Device-Centric Policy Violations. IoTSeer identified two device-
centric policy violations, V6 between three apps and V7 between four
apps. In V6, while the home is in sleep mode, the AC’s influence
on temperature triggers App23 to turn on the bulb. This violates
DC8 since the bulb is turned on when the home mode is sleep. In
V7, two physical interactions occur due to UnInt and Int channels.
While the home mode is away, the vacuum’s UnInt motion triggers

App26 to turn on the heater (1). The heater’s Int temperature then
triggers App23 and turns on the bulb, violating DC9.

5.1.3 Comparison with Previous Work. In Table 4, we compare
the policy violations flagged by IoTSeer with the most applicable
approaches, iRuler [50], IoTMon [20], and IoTSafe [21], that run on
IoT app source code to identify physical interaction vulnerabilities.

To identify physical interactions among apps, iRuler uses device
behavioral models (e.g., AC-on decreases the temperature by 1°C ev-
ery hour), and IoTMon mines the apps’ text descriptions (e.g., finds
AC is semantically related to temperature). If we assume they cor-
rectly map all physical channels that each command influences in
our smart home, iRuler cannot identify any of IoTSeer’s violations,
and IoTMon can identify 2 out of 16 violations. This is because (1)
their policies cannot reason about the intended use of apps, (2) they
do not consider the complex physical properties such as aggregation
and dependency, and (3) iRuler does not consider device-centric
vulnerabilities. Additionally, IoTMon would flag 18 false positives
as most commands do not individually cause physical interactions.
To illustrate, it defines a physical channel between the temperature
sensor and oven; yet oven-on’s individual influence on temperature
is not enough to cause an interaction.

IoTSafe models the apps’ physical behavior through dynamically
collected sensor traces and predicts physical channel values at run-
time for policy enforcement. Compared to IoTMon, IoTSafe does not
flag any false positives since it relies on sensor traces collected from
real devices. However, it can also detect only 2 out of 16 violations
in our smart home. This is because, as a run-time enforcement
system, it cannot infer the influence of an exact command on a
physical channel. Additionally, its policy enforcement may create
unnecessary panic in our home since the robot vacuum’s motion
would trigger its policy that sounds an alarm and sends a message
to the user when motion is detected.

2424

Discovering IoT Physical Channel Vulnerabilities CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

Motion
Sensor

Motion Not
Detected

Motion
Sensor

Motion
Detected

App17:
vacuum-on

App27:
door-unlock

motion-
detected

Figure 8: Illustration of the V1 violation.

5.1.4 In-Home Validation Experiments. We repeated each identified
violation in the actual house and confirmed that they (V1-V7) are true
positives. In-home validation begins by analyzing each violation’s
root cause through their (inputs, apps, dist, atime, y) logged by
IoTSeer. We activate each actuator involved in the violation using its
inputs and atime. We record the traces and confirm the interacting
apps. Lastly, we compare traces from PeMs and devices to identify
any differences in the time the violations occur.

We observe that policy violations on continuous physical chan-
nels (temperature) occur later in the house compared to CPeM. For
instance, when heater-on is invoked at time 0 in the CPeM, IoT-
Seer flags a DC9 violation at second 56. However, we observe the
violation at second ≈ 65 in the house. In contrast, violations on
instant channels (motion, sound, and illuminance) occur with minor
time deviations. These slight timing deviations are expected due to
inevitable environmental noise.
Case Study.We present a case study to illustrate a violation and de-
tail an attack scenario demonstrating how an adversary can exploit
the observed physical interaction. Figure 8 depicts the V1 violation;
a motion-detected event occurs due to the robot-vacuum-start com-
mand and triggers App27 that unlocks the door. To exploit this, an
adversary can leverage a vulnerability in the vacuum controller
app to start it and stealthily unlock the door. The adversary can
also wait until the user sets the home mode to away, which trig-
gers App17 that turns on the vacuum and causes the door to unlock.
Through this attack, the adversary can break into the house.

5.2 Violations with Device Placement Changes

We change the placement of illuminance, sound sensors, and the TV
and use IoTSeer to identify the policy violations that occur with the
new placement. We select these devices as they are easily relocated
and potentially impact nine policy violations.

IoTSeer correctly identifies that three physical channels that
caused policy violations in the initial placement do not occur any-
more, and it discovers two new physical channels causing violations.
We then evaluate the impact of the distance parameter’s accuracy
in identifying policy violations and show that IoTSeer only misses
a single violation when the distance parameter has a 50% error.
Violations After New Device Placement. Table 5 presents the
physical channels that cause policy violations after the device place-
ment changes. IoTSeer identified three physical channels (V2, V4,
and V5) that caused policy violations before do not occur in the new
device placement. On the contrary, TV-on command still creates a
sound-detected event, unintentionally triggering two apps.

IoTSeer also flagged two new physical channels that cause policy
violations, where the washer’s and dryer’s sound cause G1 violations
since the sound sensor was moved closer to them. We confirmed
with in-home experiments that all identified policy violations with
the new device placement are true positives.

Table 5: The physical channels that cause policy violations

after new device placement, and their tolerance to errors.

Physical Channel Tolerance to Distance Error

washer-on ∼∼� sound-detected 20%
dryer-on ∼∼� sound-detected > 50%

TV-on ∼∼� sound-detected > 50%

IoTSeer’s Tolerance to Errors in Distance Parameter. Errors
in the distance parameter may occur due to slight deviations in
the accuracy of IoT device localization tools and RSSI-based lo-
calization techniques. Such errors do not impact IoTSeer’s ability
to discover the initial policy violations since IoTSeer integrates SI
to tune the PeMs based on real device traces. However, the errors
may impact IoTSeer’s effectiveness in identifying violations after
a device’s location is changed. Thus, we introduce errors ranging
from ±10%-50% to the distance parameter when the placements of
devices are changed and check if IoTSeer outputs any false positive
or negative violations. We select these error rates because IoTSeer’s
RSSI-based distance estimation gives, on average, a 22.8% error
in our setup, and the only error higher than 50% is the estimation
between the TV and sound sensor (due to the wall between devices).

Table 5 presents the maximum error in distance parameters
under which IoTSeer can still correctly identify the violations. For
instance, if IoTSeer estimates the distance between the washer
and sound sensor with a 20% error, it can still correctly identify
these devices’ policy violations. However, if the error is larger than
20%, IoTSeer would miss the violations, causing false negatives. On
the contrary, IoTSeer’s dryer and TV PeMs are more tolerant to
error, where they correctly identify the violations even under 50%
error. This is because these devices’ influences on sound are higher,
enabling IoTSeer to identify their interactions.

We further checked whether the errors in the distance parameter
cause any false positives, where IoTSeer flags violations that do not
actually occur. We found that IoTSeer identifies two false positives
if the distance error is 50%, (1) the bulb-on’s illuminance PeM, and (2)
the AC-on’s sound PeM. Yet, such high errors are unlikely in practice
since IoTSeer integrates state-of-the-art localization techniques.

5.3 Performance Evaluation

5.3.1 Scalability Experiments. We evaluate the policy validation
time of IoTSeer’s falsification algorithm and compare its results with
the baseline approach of grid-testing. Grid-testing discretizes the
times when apps activate actuators as a grid and validates policies
with all combinations of activation times. Although grid-testing
identifies all 16 violations in our experiments, it yields a high time
overhead, as detailed below.
CPeM Size vs. Time. Figure 9a shows the policy validation time
of the grid-testing and falsification with an increasing number of
command PeMs influencing the same channel in the CPeM. Testing
time exponentially increases with the number of commands as each
policy is validated using a combination of apps’ activation times.
In contrast, falsification has a near-constant time overhead as it
samples activation times and searches for low robustness values
for a single violation. This adds a negligible delay, on the order of
seconds, with an increasing number of commands.

2425

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Muslum Ozgur Ozmen et al.

1 2 3 4 5 6
Influencing Actuation Commands

100

101

102

103

104

105

Ti
m

e
(s

) (
lo

g)

Grid-Testing
Falsification

(a)

1 2 3 4 5
Policies

0

50

100

150

200

250

300

350

Ti
m

e
(s

)

Grid-Testing
Falsification

(b)

Figure 9: (a) #Actuation commands and (b) #Policies vs. time.

Number of Policies vs. Time. We evaluate the validation time
with an increasing number of policies. We set the number of com-
mand PeMs to three, and a sensor measures their aggregated physi-
cal influence. Figure 9b shows the time overhead of both testing and
falsification increases linearly with the number of policies. Here,
falsification is ≈ 3× more efficient than testing as testing validates
the policies with all combinations of apps’ activation times.

5.3.2 Time for Device Trace Collection. We present the time for ac-
tuator and sensor trace collection from actual devices to tune CPeM
parameters. It took 7 hours to record the measurements from actual
sensors, which required turning on each actuator and collecting
traces from all sensors in the smart home. This is an improvement
over generating generic flow functions by SI solely using device
traces, which requires ≈ 175 hours of data collection with different
device properties and distances.

6 DISCUSSION & LIMITATIONS

Mitigating the Policy Violations. IoTSeer identifies policy viola-
tions and presents users with a report that details the violation’s
root cause. However, there is a need to mitigate the policy viola-
tions to ensure the safe and secure operation of the smart home.
We discuss three methods for mitigation, (1) patching the app code,
(2) device placement changes, and (3) removal of apps.

The first mitigation technique is patching the app code to block
its commands if the app is triggered due to an unintended influence.
This technique adds a code block that guards an app’s action with a
predicate conditioned on the devices that unintentionally influence
the app’s sensor event. If a device is unintentionally influencing
a channel, the predicate becomes false, preventing the app from
issuing its command. For instance, the V4 violation is prevented
by adding a predicate to the apps conditioned on sound-detected.
The predicate blocks apps’ actions if the AC, washer, and dryer are
simultaneously turned on, preventing the unintended interactions.

Second, we recommend users increase the distance between the
actuator and sensor to prevent policy violations. This is because a
command’s influence on sensor readings monotonically decreases
as the distance between the actuator and sensor increases [49, 55].
For instance, operating the robot vacuum away from the motion
sensor (e.g., by setting ‘keep out zones’) prevents the motion from
vacuum-on from triggering events. Lastly, removing one or more
apps involved in the physical interaction prevents a violation. A

Table 6: Mitigated policy violations with different methods.

Policy

Mitigation Method G1 G2 G3 DC

Patching the App Code 10/10 3/3 1/1 0/2
Device Placement Changes 10/10 3/3 1/1 2/2
Removal of Apps 10/10 3/3 1/1 2/2

user may prefer this method if an app is not critically needed and
other mitigation techniques are not feasible.

For the 16 identified policy violations, we applied the above miti-
gation methods and evaluated their effectiveness. Table 6 shows the
number of policy violations prevented by our mitigation methods.
First, patching the app code prevents 14 out of 16 violations as it in-
serts predicates that guard the unintended physical interactions. For
instance, V1 is patched by adding a condition to the apps triggered
by the motion detected event. The condition checks whether the
robot vacuum is not on before sending the app’s commands. Second,
changing the device placement prevents all violations. We validate
this through in-home experiments with increased distance between
the devices in the policy violations. For instance, increasing the
distance from the garbage disposal to the sound sensor prevents
V2 as garbage-disposal-on’s sound cannot reach the sensor. Finally,
removing the apps involved in the physical interactions prevents
all violations, e.g., removing a single app from the three apps that
cause the V6 violation prevents it.

We note that ourmitigationmethodsmay prevent desired actions
while eliminating dangerous app interactions. First, code patching
blocks actions while actuators that unintentionally influence a
physical channel are turned on, yet, a user may desire to issue
those actions. In such cases, the user can manually activate them
and respond to the app interactions. Second, changing a device’s
placement may be inconvenient for the user, and it may cause
other policy violations. However, IoTSeer can identify new policy
violations by updating its distance parameters and running its
security analysis module. Lastly, removing an app eliminates all
of its interactions; however, users may not desire to remove the
apps they need. In future work, we will conduct user studies to
learn how users perceive the mitigation methods and investigate
advanced techniques for automated patching. For instance, we will
explore automated distance range discovery through parameter
mining [29] to find the specific distance ranges between actuators
and sensors that can prevent all policy violations.
Manual Effort Required. IoTSeer requires users’ effort in deter-
mining the distance parameter in the CPeM and the Int/UnInt labels
for intent-based policies. First, the users need to confirm that the dis-
tances found from RSSI-based localization are correct and provide
the distances manually if necessary. This effort is not a significant
burden for users since they can provide approximate distances.
This is because IoTSeer can tolerate small errors in the distance
parameter, as shown in our evaluation. Second, although IoTSeer
generates Int/UnInt labels between commands and apps, the users
may have different intentions than the generated ones. Therefore,
they need to check the labels and update them if necessary based
on their intended use of the actuators and apps.

2426

Discovering IoT Physical Channel Vulnerabilities CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

Table 7: Comparison of IoTSeer with IoT security systems.

Physical Channel Properties Security Analysis

System Dist. Agg. Dep.
Labels

Composition
Time Policy

(Int/UnInt) Constraints Validation
†

IotGuard∗ [17] ✗ ✗ ✗ ✗ ✗ ✗ RA

IoTSafe∗ [21] ✗ ✓ ✓ ✗ ✗ ✗ RP

MenShen [12] ✗ ✗ ✗ ✗ ✗ ✗ RA

iRuler [50] ✗ ✗ ✗ ✗ ✗ ✗ RL

IoTCom [5] ✗ ✗ ✗ ✗ ✗ ✗ MC

IoTMon [20] ✗ ✗ ✗ ✗ ✗ ✗ N/A

IoTSeer ✓ ✓ ✓ ✓ ✓ ✓ F

∗ IoTGuard and IoTSafe are run-time policy enforcement systems.
† RA: Reachability Analysis, RL: Rewriting Logic, MC: Model Checking, F: Optimization-guided
Falsification, RP: Run-time Prediction.

Environmental Noise. The environment that the devices operate
in may influence the physical channels and impact the app interac-
tions. As IoTSeer leverages SI to tune CPeM parameters, it integrates
various environmental impacts such as room layout and furniture.
Yet, human activities and uncontrolled environmental noise may
also influence sensor measurements. To measure the impact of
human activities, we conducted additional experiments while a
user was cooking and exercising. We have found that the users do
not introduce detectable changes to sensors. We have shown in
in-home validation experiments that uncontrolled noise causes the
violations to occur at slightly different times.

7 RELATEDWORK

In Table 7, we compare IoTSeer with several recent approaches that
focus on identifying the vulnerabilities that IoT app interactions
present. These approaches can be classified into two categories:
run-time policy enforcement and static analysis for IoT apps.
Run-time Policy Enforcement. IoTGuard [17] instruments apps
to build dynamic models and enforces policies at run-time. Yet, it
cannot correctly identify physical interactions since its models do
not include the commands’ physical influences.

IoTSafe [21] collects actuator and sensor traces to identify physi-
cal interactions and builds physical models for continuous physical
channels to predict incoming policy violations at run-time. How-
ever, it cannot identify intent-based violations as its policies are
only defined based on the use cases of devices, and it cannot de-
termine the specific command that influences a physical channel
from examining sensor measurements at run-time. Additionally,
IoTSafe does not consider distance in its models and flags incorrect
violations or fails to detect a violation when a device’s placement is
changed. These systems motivate the need for IoTSeer, which can
precisely identify dangerous physical interactions before the smart
home’s run-time operation.
Static Analysis of IoT Apps. Existing static analysis systems do
not model apps’ complex physical behavior. Instead, they build indi-
vidual physical channel mappings, generate naive device behavioral
models [12, 50], or use natural language processing [20] to infer
interacting apps. Thus, they identify limited physical interactions
and lead to false positives. As presented in Table 7, IoTSeer is the
first to integrate the complex physical properties of commands and
sensor events into the source code of IoT apps (“Physical Channel
Properties” Columns). Additionally, their validation techniques can-
not readily be used to verify physical interactions as apps exhibit

both discrete and continuous behaviors. In contrast, IoTSeer extends
optimization-guided falsification for scalable policy validation.

8 CONCLUSIONS

We introduce IoTSeer2, which identifies the physical channel vul-
nerabilities in smart homes. IoTSeer combines static app analysis
with system identification to precisely model the composite phys-
ical behavior of apps and uses falsification to validate identified
physical channel policies. Our evaluation in a real house demon-
strates that many apps interact over physical channels, and IoTSeer
efficiently and effectively identifies all policy violations. This paper
is an important step forward in achieving the compositional safety
and security of an IoT system’s physical behavior.

ACKNOWLEDGMENTS

We would like to thank Engin Masazade and Ali Cem Kizilalp for
their feedback on the earlier version of this paper. This work has
been partially supported by the National Science Foundation (NSF)
under grants CNS-2144645, 1901242, and 1910300, DARPA VSPELLS
under grant HR001120S0058, Rolls-Royce Cyber Technology Re-
search Network Award, National Natural Science Foundation of
China (No. 61702263), and the scholarship from China Scholarship
Council (No. 201906845026). The views expressed are those of the
authors only.

REFERENCES

[1] Houssam Abbas, Georgios Fainekos, Sriram Sankaranarayanan, Franjo Ivančić,
and Aarti Gupta. 2013. Probabilistic temporal logic falsification of cyber-physical
systems. ACM Transactions on Embedded Computing Systems (TECS).

[2] HoussamAbbas, HansMittelmann, and Georgios Fainekos. 2014. Formal property
verification in a conformance testing framework. In ACM/IEEE Conference on
Formal Methods and Models for Codesign (MEMOCODE).

[3] Abbas Acar, Hossein Fereidooni, Tigist Abera, Amit Kumar Sikder, Markus Miet-
tinen, Hidayet Aksu, Mauro Conti, Ahmad-Reza Sadeghi, and A Selcuk Uluagac.
2018. Peek-a-Boo: I see your smart home activities, even encrypted! arXiv
preprint arXiv:1808.02741.

[4] Omotayo G Adewumi, Karim Djouani, and Anish M Kurien. 2013. RSSI based
indoor and outdoor distance estimation for localization in WSN. In IEEE Interna-
tional Conference on Industrial Technology (ICIT).

[5] Mohannad Alhanahnah, Clay Stevens, and Hamid Bagheri. 2020. Scalable analysis
of interaction threats in IoT systems. In ACM SIGSOFT International Symposium
on Software Testing and Analysis.

[6] Rajeev Alur, Costas Courcoubetis, Nicolas Halbwachs, Thomas A Henzinger,
Pei-Hsin Ho, Xavier Nicollin, Alfredo Olivero, Joseph Sifakis, and Sergio Yovine.
1995. The algorithmic analysis of hybrid systems. Theoretical Computer Science.

[7] Yashwanth Singh Rahul Annapureddy and Georgios E Fainekos. 2010. Ant
colonies for temporal logic falsification of hybrid systems. In Annual Conference
on IEEE Industrial Electronics Society.

[8] Yashwanth Annpureddy, Che Liu, Georgios Fainekos, and Sriram Sankara-
narayanan. 2011. S-taliro: A tool for temporal logic falsification for hybrid
systems. In International Conference on Tools and Algorithms for the Construction
and Analysis of Systems. Springer.

[9] Ardupilot SITL 2022. Ardupilot Simulation. https://ardupilot.org/dev/docs/
simulation-2.html. [Online; accessed 18-April-2022].

[10] Musard Balliu, Massimo Merro, and Michele Pasqua. 2019. Securing cross-app
interactions in IoT platforms. In IEEE Computer Security Foundations Symposium.

[11] Musard Balliu, Massimo Merro, Michele Pasqua, and Mikhail Shcherbakov. 2020.
Friendly Fire: Cross-App Interactions in IoT Platforms. ACM Transactions on
Privacy and Security (TOPS).

[12] Lei Bu, Wen Xiong, Chieh-Jan Mike Liang, Shi Han, Dongmei Zhang, Shan Lin,
and Xuandong Li. 2018. Systematically ensuring the confidence of real-time
home automation IoT systems. ACM Transactions on Cyber-Physical Systems.

2The development of IoTSeer and its evaluation in a real IoT environment was a
highly complex endeavor. This paper’s extended version is available with (1) detailed
PeM implementations, (2) a complete list of device-centric policies, (3) descriptions of
IoT apps installed in our evaluation, and (4) CPeM fidelity experiment results [40].

2427

https://ardupilot.org/dev/docs/simulation-2.html
https://ardupilot.org/dev/docs/simulation-2.html

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Muslum Ozgur Ozmen et al.

[13] Carla Physics 2022. Carla - Control and Monitor Vehicle Physics. https://carla.
readthedocs.io/en/latest/tuto_G_control_vehicle_physics/. [Online; accessed
18-April-2022].

[14] Z Berkay Celik, Earlence Fernandes, Eric Pauley, Gang Tan, and Patrick McDaniel.
2019. Program analysis of commodity IoT applications for security and privacy:
Challenges and opportunities. ACM Computing Surveys (CSUR).

[15] Z Berkay Celik, Patrick McDaniel, and Gang Tan. 2018. Soteria: Automated IoT
safety and security analysis. In USENIX Annual Technical Conference (USENIX
ATC).

[16] Z Berkay Celik, Patrick McDaniel, Gang Tan, Leonardo Babun, and A Selcuk
Uluagac. 2019. Verifying internet of things safety and security in physical spaces.
IEEE Security & Privacy.

[17] Z Berkay Celik, Gang Tan, and Patrick D McDaniel. 2019. IoTGuard: Dynamic
Enforcement of Security and Safety Policy in Commodity IoT. In NDSS.

[18] Haotian Chi, Qiang Zeng, Xiaojiang Du, and Jiaping Yu. 2020. Cross-app interfer-
ence threats in smart homes: Categorization, detection and handling. In IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN).

[19] Anthony Corso, Robert J Moss, Mark Koren, Ritchie Lee, and Mykel J Kochender-
fer. 2020. A survey of algorithms for black-box safety validation. arXiv preprint
arXiv:2005.02979.

[20] Wenbo Ding and Hongxin Hu. 2018. On the safety of IoT device physical inter-
action control. In ACM SIGSAC Conference on Computer and Communications
Security (CCS).

[21] Wenbo Ding, Hongxin Hu, and Long Cheng. 2021. IoTSafe: Enforcing Safety and
Security Policy with Real IoT Physical Interaction Discovery. In NDSS.

[22] Georgios Fainekos, Bardh Hoxha, and Sriram Sankaranarayanan. 2019. Robust-
ness of Specifications and Its Applications to Falsification, Parameter Mining,
and Runtime Monitoring with S-TaLiRo. In International Conference on Runtime
Verification. Springer.

[23] Chenglong Fu, Qiang Zeng, and Xiaojiang Du. 2021. HAWatcher: Semantics-
Aware Anomaly Detection for Appified Smart Homes. In USENIX Security.

[24] Patrice Godefroid, Michael Y Levin, and David A Molnar. 2008. Automated
Whitebox Fuzz Testing. In NDSS.

[25] Furkan Goksel, Muslum Ozgur Ozmen, Michael Reeves, Basavesh Shivakumar,
and Z Berkay Celik. 2021. On the safety implications of misordered events and
commands in IoT systems. In IEEE Security and Privacy Workshops (SPW).

[26] Matthew J Hancock. 2006. The 1-D heat equation. MIT OpenCourseWare.
[27] Thomas A Henzinger, Peter W Kopke, Anuj Puri, and Pravin Varaiya. 1998.

What’s decidable about hybrid automata? J. Comput. System Sci.
[28] HomeKit 2022. Apple’s HomeKit. https://www.apple.com/ios/home/. [Online;

accessed 30-April-2022].
[29] Bardh Hoxha, Adel Dokhanchi, and Georgios Fainekos. 2018. Mining parametric

temporal logic properties in model-based design for cyber-physical systems.
International Journal on Software Tools for Technology Transfer.

[30] IFTTT 2022. IFTTT (If This Then That). https://ifttt.com/. [Online; accessed
18-April-2022].

[31] AG Jackson, SJP Laube, and J Busbee. 1996. Sensor principles and methods for
measuring physical properties. JOM.

[32] Karel J Keesman. 2011. System identification: an introduction. Springer Science &
Business Media.

[33] Mark G Lawrence. 2005. The relationship between relative humidity and the
dewpoint temperature in moist air: A simple conversion and applications. Bulletin
of the American Meteorological Society.

[34] Nancy Lynch, Roberto Segala, and Frits Vaandrager. 2003. Hybrid I/O automata.
Information and Computation.

[35] Sunil Manandhar, Kevin Moran, Kaushal Kafle, Ruhao Tang, Denys Poshyvanyk,
and Adwait Nadkarni. 2020. Towards a Natural Perspective of Smart Homes
for Practical Security and Safety Analyses. In IEEE Symposium on Security and
Privacy (S&P).

[36] Fedor Mitschke. 2009. Decibel units. In Fiber Optics. Springer.

[37] Dang Tu Nguyen, Chengyu Song, Zhiyun Qian, Srikanth V Krishnamurthy,
Edward JM Colbert, and Patrick McDaniel. 2018. IoTSan: Fortifying the safety
of IoT systems. In International Conference on Emerging Networking Experiments
and Technologies.

[38] Justin Norden, Matthew O’Kelly, and Aman Sinha. 2019. Efficient black-box
assessment of autonomous vehicle safety. arXiv preprint arXiv:1912.03618.

[39] OpenHab 2022. OpenHAB: Open Source Automation Software for Home. https:
//www.openhab.org/. [Online; accessed 30-April-2022].

[40] MuslumOzgur Ozmen, Xuansong Li, Andrew Chu, Z. Berkay Celik, Bardh Hoxha,
and Xiangyu Zhang. 2022. Discovering IoT Physical Channel Vulnerabilities.
arXiv preprint arXiv:2102.01812.

[41] Erion Plaku, Lydia E Kavraki, and Moshe Y Vardi. 2009. Falsification of LTL safety
properties in hybrid systems. In International Conference on Tools and Algorithms
for the Construction and Analysis of Systems. Springer.

[42] Claudius Ptolemaeus (Ed.). 2014. System Design, Modeling, and Simulation using
Ptolemy II. Ptolemy.org. http://ptolemy.org/books/Systems

[43] PX4 SITL 2022. PX4 Simulation. https://docs.px4.io/master/en/simulation/.
[Online; accessed 18-April-2022].

[44] Philippe Réfrégier. 2004. Noise theory and application to physics: from fluctuations
to information. Springer Science & Business Media.

[45] Rahul Anand Sharma, Elahe Soltanaghaei, Anthony Rowe, and Vyas Sekar. 2022.
Lumos: Identifying and Localizing Diverse Hidden IoT Devices in an Unfamiliar
Environment. In USENIX Security.

[46] Milijana Surbatovich, Jassim Aljuraidan, Lujo Bauer, Anupam Das, and Limin Jia.
2017. Some recipes can do more than spoil your appetite: Analyzing the security
and privacy risks of IFTTT recipes. In International Conference on World Wide
Web.

[47] Yuan Tian, Nan Zhang, Yueh-Hsun Lin, XiaoFeng Wang, Blase Ur, Xianzheng
Guo, and Patrick Tague. 2017. Smartauth: User-centered authorization for the
internet of things. In USENIX Security.

[48] Blase Ur, Melwyn Pak Yong Ho, Stephen Brawner, Jiyun Lee, Sarah Mennicken,
Noah Picard, Diane Schulze, and Michael L Littman. 2016. Trigger-action pro-
gramming in the wild: An analysis of 200,000 IFTTT recipes. In CHI Conference
on Human Factors in Computing Systems.

[49] Nikolaos Voudoukis and Sarantos Oikonomidis. 2017. Inverse square law for light
and radiation: A unifying educational approach. European Journal of Engineering
Research and Science.

[50] Qi Wang, Pubali Datta, Wei Yang, Si Liu, Adam Bates, and Carl A Gunter. 2019.
Charting the Attack Surface of Trigger-Action IoT Platforms. In ACM SIGSAC
Conference on Computer and Communications Security (CCS).

[51] Giovanni Zanca, Francesco Zorzi, Andrea Zanella, and Michele Zorzi. 2008. Ex-
perimental comparison of RSSI-based localization algorithms for indoor wireless
sensor networks. In Proceedings of the Workshop on Real-World Wireless Sensor
Networks.

[52] Zapier 2022. Zapier: Connect your apps and automate workflows. https://zapier.
com/. [Online; accessed 30-April-2022].

[53] Lefan Zhang, Weijia He, Jesse Martinez, Noah Brackenbury, Shan Lu, and Blase
Ur. 2019. AutoTap: synthesizing and repairing trigger-action programs using
LTL properties. In 2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE).

[54] Valerie Zhao, Lefan Zhang, Bo Wang, Shan Lu, and Blase Ur. 2020. Visualizing
Differences to Improve End-User Understanding of Trigger-Action Programs. In
CHI Conference on Human Factors in Computing Systems.

[55] Alexander Zhivov, Hakon Skistad, Elisabeth Mundt, Vladimir Posokhin, Mike
Ratcliff, Eugene Shilkrot, and Andrey Strongin. 2001. Principles of air and con-
taminant movement inside and around buildings. In Industrial Ventilation Design
Guidebook. Elsevier.

[56] Aditya Zutshi, Jyotirmoy V Deshmukh, Sriram Sankaranarayanan, and James
Kapinski. 2014. Multiple shooting, cegar-based falsification for hybrid systems.
In International Conference on Embedded Software.

2428

https://carla.readthedocs.io/en/latest/tuto_G_control_vehicle_physics/
https://carla.readthedocs.io/en/latest/tuto_G_control_vehicle_physics/
https://www.apple.com/ios/home/
https://ifttt.com/
https://www.openhab.org/
https://www.openhab.org/
http://ptolemy.org/books/Systems
https://docs.px4.io/master/en/simulation/
https://zapier.com/
https://zapier.com/

	Abstract
	1 Introduction
	2 Motivation and Threat Model
	2.1 Threat Model

	3 Design Challenges
	4 IoTSeer Design
	4.1 Generic Offline Module
	4.2 Deployment-specific Module
	4.3 Security Analysis Module

	5 Evaluation
	5.1 Effectiveness
	5.2 Violations with Device Placement Changes
	5.3 Performance Evaluation

	6 Discussion & Limitations
	7 Related Work
	8 Conclusions
	Acknowledgments
	References

