
PGPATCH: Policy-Guided Logic Bug Patching
for Robotic Vehicles

Hyungsub Kim, Muslum Ozgur Ozmen, Z. Berkay Celik, Antonio Bianchi, and Dongyan Xu
Purdue University

{kim2956, mozmen, zcelik, antoniob, dxu}@purdue.edu

Abstract—Automated program repair (APR) methods aim to
identify patches for a given bug and apply them with minimal
human intervention. To date, existing APR approaches focus on
repairing software bugs, such as memory safety bugs. However,
our analysis of popular robotic vehicle (RV) control software
shows that most of their bugs are not memory bugs but rather
logic bugs. These bugs, while not causing software crashes, can
cause an RV to reach an undesired physical state (e.g., hitting
the ground).

To fix these logic bugs, we introduce PGPATCH, a policy-
guided program repair framework for RV control programs,
which identifies the correct patch for a given logic bug and
applies it without human intervention. PGPATCH takes, as input,
existing or new logic formulas used to discover logic bugs. It
then leverages the formulas using a dedicated dynamic analysis
to classify the previously known logic bugs into a patch type. It
next uses a customized algorithm, based on the identified patch
type and violated formula, to produce a source code patch as
output. Lastly, it creates repeatable tests to verify the patch’s
completeness, ensuring that the patch is correct and does not
degrade the RV’s performance. We evaluate PGPATCH on selected
bug cases from three popular RV control software and find that it
correctly fixes 258 out of 297 logic bugs (86.9%). We additionally
recruit 18 experienced RV developers and users and conduct a
user study that demonstrates how using PGPATCH makes fixing
bugs in RV software significantly quicker and less error-prone.

I. INTRODUCTION

Patching security vulnerabilities in a timely manner is crucial
to prevent attackers from compromising software. Yet, recent
works have shown that creating patches on time is challenging
due to the required manual effort [33], [75]. For this reason,
there has been an increasing interest in automated program
repair (APR) to create patches without human intervention.

There are two broad types of APR approaches. First, test
suite-based methods generate patches for bugs that cause
outputs to deviate from developers’ expectations [20], [27],
[40], [49], [54], [56], [79], [80]. Their patch localization
and generation algorithms require users to input passing and
failing test cases that define the program’s expected outputs
corresponding to certain inputs (i.e., test suites) [39], [46].
Second, specification-based APR approaches fix bugs through
specifications that define functional requirements in the form
of natural language documents or formal logic formulas [5],
[15], [34], [37], [38], [48], [82].

In this paper, we consider logic bugs in robotic vehicle (RV)
control software, which are bugs that cause deviations in the
RV’s physical behavior from the developer’s expectations but
do not cause the program to stop execution [32]. The reason is
that our analysis of 1,257 existing bugs (from 2014 to 2021) in

two popular RV control programs (ArduPilot [8] and PX4 [64])
indicates 98.2% of them are logic bugs, showing the prevalence
of logic bugs in RV software. Logic bugs in RVs mainly stem
from misimplementations and design flaws. For example, PX4’s
documentation states that “fail-safe mode must be triggered
when GPS loss is detected” [28]. However, PX4 fails to trigger
the fail-safe mode under the following three conditions: (1)
the COM_POS_FS_DELAY configuration parameter has a negative
value, (2) the RV is in the CIRCLE flight mode, and (3) the RV
passes through an area where the GPS signal is not available.
This logic bug leads to unsafe states, which causes the RV to
float unpredictably, potentially crashing into an obstacle.

Promptly fixing bugs in RVs is critical because an attacker
can stealthily exploit such logic bugs to cause undesired
behaviors and physical damage [17], [41]–[43]. Yet, patching
logic bugs in RVs is more challenging than fixing bugs in
traditional software for two main reasons. First, the “correct
behavior” of RVs depends not only on the “cyber space”
(i.e., how RVs behave according to inputs given to control
software) but also on the “physical space” (i.e., the physical
environment in which they operate). For example, consider
that a user gives an RV input to make the RV move forward.
From a traditional software point of view, the RV’s correct
behavior is to move forward because the software must show
consistent behaviors according to program inputs. Yet, the RV
may show different correct behaviors based on the current
physical environment: (i) moving backward if the RV is near
an obstacle, (ii) landing on the ground if the RV loses GPS
signals, and (iii) staying in a stable position if a strong wind
blows. Second, the “input space” and “output space” of RV
software are much larger than those of traditional software,
given the amount of data that an RV receives and processes
at any given point in time. This data encompasses periodic
measurements from multiple sensors as well as commands
given by a ground control station (GCS).

Unfortunately, existing APR approaches do not address
these challenges. In fact, test suite-based methods fail to fix
logic bugs in RV control programs because the correctness of
patches depends on the test suite’s completeness. Achieving
completeness is challenging due to the RV software’s large
input and output space, as shown by previous work [45], [52],
[71]. Further, specification-based approaches cannot fix logic
bugs since they mainly focus on memory bugs [34], [48], or
they do not create code-level patches from specifications that
define the software’s correct behavior [5], [15], [37], [38], [82].

To address these limitations, in this paper, we introduce

PGPATCH, a policy-guided program repair framework for RV
control programs, which generates patches for a given logic
bug and applies them without human intervention. PGPATCH is
composed of four interconnected components: (1) Preprocessor,
(2) Patch Type Analyzer, (3) Patch Generator, and (4) Patch
Verifier. First, the Preprocessor takes an input that triggers the
bug and a formula written in the PGPATCH policy language
(PPL) which defines RVs’ expected operations. This component
checks the validity of the formula given by users. We note that
PGPATCH requires only a single test case triggering the bug
(i.e., one failing test case) while test suite-based APR methods
require a complete set of test cases, including both failing and
passing cases. Second, to handle diverse types of logic bugs in
RVs, the Patch Type Analyzer finds the most appropriate patch
type to fix the specific logic bug. Third, the Patch Generator
component finds the proper patch location for the targeted bug
and creates a patch. PGPATCH first identifies a patch location
through the PPL formula and pattern matching. It then creates
a patch based on the formula, identified patch type, and patch
location. Lastly, the Patch Verifier inserts the created patch into
the target source code and compiles the patched code. It then
tests if the patch fixes the bug and confirms that the patch does
not break the RV’s functionality or degrade its performance.

We evaluate PGPATCH on ArduPilot [8], PX4 [64], and
Paparazzi [59], the three most popular flight control software
used in many commodity RVs. PGPATCH correctly fixes 258
out of 297 logic bugs (86.9%) requiring, on average, 12.5
minutes to create one patch. Further, we conduct a user study
to compare the effort required by RV software developers and
users to build PPL formulas with their effort to create manual
code-level patches. Our user study shows that building PPL
formulas is easier and less error-prone compared to manually
patching logic bugs. We make the following contributions:

• Behavior-aware Patch Generation. We introduce
PGPATCH, a policy-guided APR framework for RV
control programs, which leverages existing or new logic
formulas for patch localization and generation via a com-
bination of static and dynamic analysis. PGPATCH also
creates repeatable tests to validate the patch’s correctness.

• Evaluation with Real-world RV Software. We applied
PGPATCH to the three most popular RV control software
packages. PGPATCH generated correct patches for 258 of
the 297 previously known bug cases (86.9%).

• User Study. We recruited experienced RV developers and
users and conducted a user study that demonstrates the
usefulness of PGPATCH for patching bugs compared to
manual patching.

To foster research on this topic, we make PGPATCH publicly
available (https://github.com/purseclab/PGPatch).

Ethical Considerations and Responsible Disclosure. We
responsibly disclosed any previously unknown bug discovered
in this paper to the affected RV software developers. In our
user study, we avoid collecting any personally identifiable
information (PII). Our study was reviewed by our institution’s
IRB and considered IRB exempt.

< formula > : : = <term > <verb > < va lue > | < c o n j u n c t i o n >
< formula > | i f < formula > , t h e n < formula >
| i f f < formula > , t h e n < formula >

<term > : : = S | P | E | V | F
<verb > : : = ` i s ' | ` i s not ' | ` i s more than ' |

` i s l e s s than ' |
` i s g r e a t e r t h a n or e q u a l to ' |
` i s l e s s t h a n or e q u a l to '

< va lue > : : = S | P | V | F |
` t r u e ' | ` f a l s e ' | `enab led ' |
` d i s a b l e d ' | ` e r r o r ' | `on ' |
`o f f ' | < i n t e g e r > | < rea l_number >

< c o n j u n c t i o n > : : = `and ' | `or '

Listing 1: PGPATCH policy language (PPL) syntax in BNF.

II. PRELIMINARIES

Logic Bugs and Adversarial Exploitation in RVs. In this
paper, we use the term “logic bugs” to refer to bugs that
cause a program to operate incorrectly, leading to undesired
physical behavior, without causing a program crash or memory
corruption. Starting from this definition, we consider buffer
overflows, null pointer dereferences, and divisions by zero
as non-logic bugs [41], [43]. Logic bugs are caused by
developers incorrectly designing or implementing software
components. The developers’ mistakes might occur for various
reasons, including but not limited to unexpected environmental
conditions (e.g., strong wind and significant sensor noise) and
copying-and-pasting a buggy code snippet [16], [19], [72].

We assume that an adversary can exploit a logic bug to
stealthily disrupt an RV’s normal behaviors. Particularly, the
RV’s three types of inputs (configuration parameters, user com-
mands, and environmental factors) can be leveraged to trigger
a logic bug. The adversary can (1) override the configuration
parameter values, (2) replay or spoof user commands, and (3)
change environmental conditions or wait for suitable conditions
before conducting attacks. The adversary can conduct input
manipulation by exploiting known vulnerabilities in the RV’s
communication protocol and sensors [44], [73], [81].
PGPATCH Policy Language (PPL). A recent work on
logic bug-finding (PGFuzz [41]) has created linear temporal
logic (LTL) formulas for discovering logic bugs. Particularly,
users identify the RVs’ correct behaviors through official
documentations [11], [59], [68] and formally represent them
with LTL templates [41], [82]. However, defining LTL formulas
requires users to learn about syntax and rules of temporal logic.
To reduce the difficulty of LTL formulas, we introduce PPL
in BNF notation, as shown in Listing 1. In PPL formulas,
the “term” can be formed over an RV’s physical state (S),
configuration parameter (P), environmental factor (E), the name
of a variable (V), and the name of a function (F).

Additionally, we design two PPL templates: (i) T1: “[term]
[verb] [value] (conjunction)” and (ii) T2: “if / iff [term] [verb]
[value] (conjunction), then [term] [verb] [value] (conjunction)”.
Users can use these formula templates to easily and quickly
build new formulas. For example, given a policy in natural
language stating that “the engine must be turned on”, users
can express the policy with T1 template: “engine is on”. Here,
“engine”, “is”, and “on” are matched with “term”, “verb”, and
“value” keywords. These three types of keywords compose

2

https://github.com/purseclab/PGPatch

1 // Get a time delay to trigger position fail-safe
2 param_get(param_find("COM_POS_FS_DELAY"), &val);
3 // Force the valid range of the parameter
4 posctl_nav_loss_delay = math::constrain(val * sec_to_usec,
5 POSVEL_PROBATION_MIN, POSVEL_PROBATION_MAX);

Listing 2: GPS Fail-Safe Bug [41].

1 bool AP_Arming_Rover::pre_arm_checks() {
2 if (rover.g2.sailboat.sail_enabled()
3 && !rover.g2.windvane.enabled()) {
4 printf("Sailing enabled with no WindVane");
5 return false;

Listing 3: Sailboat Pre-Arming Bug [1].

a proposition that is mandatory to build a PPL formula.
Conversely, the “conjunction” is optional. T2 template is for
expressing RV behaviors that have preconditions and post-
conditions in PPL formulas. In T2 template, “if” expresses
imply and “iff” represents “if and only if”, where “if” is used
for unidirectional statements and “iff” is used for bidirectional
statements. For instance, given a policy stating that “if the
RV lands on the ground and the pilot turns on disarming,
then the engine must be turned off”, the users can represent
this policy with T2 template: “if land is true and disarm is
on, then engine is off”. Here, “land is true” and “disarm is
on” are preconditions to trigger a post-condition (“engine is
off”). Lastly, we implement a translator that converts LTL to
PPL formulas so that PGPATCH can leverage the existing LTL
formulas from logic bug-finding tools to fix bugs (Section V-B).

III. EXAMPLES OF LOGIC BUGS

A. GPS Fail-Safe Bug

PX4 documentation states that “If the time exceeds COM_-
POS_FS_DELAY seconds after GPS loss is detected, the GPS
fail-safe must be triggered”. This policy is formally expressed
in PPL syntax as: “If GPSloss is on and Losstime is more
than COM_POS_FS_DELAY, then GPSfail is on”. PX4 v1.7.4
forces the COM_POS_FS_DELAY configuration parameter to have
a value in the valid range (from 1 to 100) at lines 4 and 5 in
Listing 2. However, developers remove these lines from PX4
v1.9. If users assign a value outside the valid range (e.g., -1) to
the parameter, it causes PX4 to fail to trigger the GPS fail-safe
and randomly fly in the air when it loses GPS signals [41].

B. Sailboat Pre-Arming Bug

ArduPilot documentation states that “pre-arming must re-
turn an error when a sailboat is turned on without a wind
vane”, formally expressed with the formula: “If armed is
false and SAIL_ENABLE is 1 and WNDVN_TYPE is 0, then
pre_arm_checks is error”. This policy intends that the RV
software must not allow the sailboat to operate without the wind
vane because RVs cannot navigate a waypoint without wind
direction obtained from the wind vane. However, ArduPilot did
not implement this, causing the RV to deviate from its planned
path [1]. To fix this bug, developers add an “if statement” into
the source code, as shown in Listing 3.

1 void Copter::failsafe_battery_event(void) {
2 if (ap.land_complete)
3 // Stop motors
4 else if (g.failsafe_battery_enabled == FS_BATT_RTL
5 && home_distance > wp_nav.get_wp_radius())
6 // Switch to RTL
7 else // Switch to LAND

Listing 4: Battery Fail-Safe Bug [13].

1 void FlightTaskAutoMapper::_prepareLandSetpoints() {
2 _constraints.tilt = _param_mpc_tiltmax_lnd.get();
3 ...
4 bool FlightTaskManualAltitude::activate() {
5 _constraints.tilt = _param_mpc_man_tilt_max.get();

Listing 5: Tilt Angle Bug [77].

C. Battery Fail-Safe Bug

When a fail-safe condition is detected (e.g., due to a low-
battery condition), and the RV is within 2 meters from its
home location, ArduPilot must change the flight mode to the
LAND mode, making the RV decrease its altitude and land on
the ground. If the RV is farther than 2 meters from its home
location, ArduPilot must switch the flight mode to the RTL
mode. This mode first makes the RV increase its altitude by
RTL_ALT parameter value, then, it makes the RV navigate to its
home position and land on the ground. This is represented in
PPL syntax as: “If Failsafe is on and FS_BATT_ENABLE is
2 and home_distance is more than 2, then mode is RTL”.
However, ArduPilot decides its flight mode based on the
WPNAV_RADIUS parameter, instead of the hard-coded 2 meters
as depicted at line 5 in Listing 4. This causes the RV to operate
in an incorrect flight mode.

D. Tilt Angle Bug

RV control programs typically limit a tilt range to prevent
drastic behaviors. However, the programs must not limit tilt
in LAND or RTL flight modes, as this may cause the RV to
lose position control when it is descending. A policy for this
behavior is defined as: “If mode is LAND or mode is RTL, then
_constraints.tilt is disabled”. However, PX4 limits the
tilt value in LAND and RTL modes [77], which violates the
above PPL formula, as shown in Listing 5.

E. Exploiting Logic Bugs

Attackers can exploit logic bugs to perform hard-to-detect
attacks. For instance, an attacker can exploit the Battery Fail-
Safe Bug (Section III-C) to crash an RV on the ground, by
assigning 1 to WPNAV_RADIUS and 300 to RTL_ALT, the RTL
mode’s minimum altitude. Then, if the RV’s location is 2 meters
from its home location, and the fail-safe is triggered, ArduPilot
decides to change the current flight mode to RTL mode, since
the distance between the RV and the home location is greater
than the WPNAV_RADIUS parameter value (i.e., 1 meter). Then,
the RV keeps increasing its altitude by 300 meters. This altitude
increase can completely deplete the RV’s battery (especially
if the fail-safe was triggered due to a low-battery condition),
leading the RV to a physical crash. Similarly, the adversary
can exploit the other logic bugs introduced in Section III.

3

Syntax

analyzer

Check syntax error in

the formula

Expression tree
Term analyzer

Check validity of

the formula’s terms

Terms and

source code

mapper

Generating patch

Patch verify

Patched firmware

1) Preprocessor 2) Patch Type Analyzer 4) Patch Verifier

2

3a

7

Results of

3a, 5, 6 steps

3b

4

5

8

9

Patch dispatching

3) Patch Generator
Formula

Buggy code

Bug-

triggering

inputs

1b

1c

1a

Inputs

Output

Patched code

Patch locator

Patch type

analyzer

6 Infer patch type

Patch

location

Simulator

<Term classification table>

Map the formula’s

terms to variables

on code

Term Type

… …
Term Mapped

variables

… …

5a

<Term-source code

mapping table>

Mapped

variables

How to

access?

… …

7a

<Access pattern mapping table>

Error

Fig. 1: Overview of PGPATCH’s workflow and architecture.

IV. LOGIC BUG ANALYSIS

As a preliminary analysis, by analyzing 1,257 existing
bugs in ArduPilot and PX4 from 2014 to 2021 (Detailed
in Appendix A), we found that 33.7% of them can be fixed
with one of the following five patch categories: (1) disabling
a statement, (2) checking valid ranges of parameters, (3)
updating a statement, (4) adding a condition check, and (5)
reusing an existing code snippet. Therefore, we designed
PGPATCH to address these patch types. The other 66.3%
of the patches require (1) adding third party libraries, (2)
implementing a new feature from scratch, (3) defining a
new variable, loop, or function, and (4) other complicated
techniques, e.g., adding/updating mathematical formulas. These
requirements prevent PGPATCH from automatically creating
patches for these bugs (Detailed in Section VII-B).
Disabling a Statement (DISABLE). A logic bug may cause
an RV to change its physical state when it is not supposed
to. This mainly occurs when developers miss prohibiting a
behavior. Fixing this bug type requires localizing and disabling
the statement that changes the RV’s state incorrectly.
Checking Valid Ranges of Parameters (CHECK). RV software
may fail to check the valid ranges of some configuration param-
eters, which leads to unexpected behaviors (e.g., instability or
loss of attitude control). When a parameter has a value outside
the valid range, its value must be restored to its default setting
to fix such bugs.
Updating a Statement (UPDATE). When an RV’s states do
not satisfy all of the preconditions to trigger a behavior,
the RV software must not trigger the behavior. However, an
incorrect “if statement” may allow the RV software to trigger
the behavior even though the RV’s states satisfy only a part
of the preconditions. To fix this type of bug, the “if statement”
must be updated with the correct preconditions.
Adding a Condition Check (ADD). A missed condition
check (i.e., a missing “if statement”) might prevent RVs from
conducting correct behaviors even though all the preconditions
are satisfied. Hence, adding the correct condition check and
triggering the correct behavior fix such bugs.
Reusing an Existing Code Snippet (REUSE). Some logic bugs
may cause the RV software to stop checking an RV’s states
after a specific flight stage (e.g., takeoff). These can be patched
by reusing the existing code snippets in all the flight stages.

Logic

bug-finder

LTL

formula

Bug-triggering

input

PGPatch Patch

Translator

PPL

1

2

Bug

report

PGPatch Patch

Developer

PPL

(a) (b)
1

Bug-triggering

input

2

Fig. 2: Two usage scenarios of PGPATCH.

V. PGPATCH

A. System Overview

PGPATCH is a policy-based program repair tool for RVs,
which patches logic bugs in the source code. Figure 1
demonstrates its four interconnected components, and Figure 2
shows its two different usage scenarios. Particularly, PGPATCH
takes, as input, (1) a formula, which defines the RV’s expected
operation, and (2) a bug-triggering input that includes user
commands, configuration parameters, environmental factors,
and the RV’s physical states (e.g., the battery level). The for-
mula can be given to PGPATCH as input in two different ways.
(i) Figure 2-(a) shows the main usage scenario of PGPATCH.
It takes existing LTL formulas, which were used to discover
logic bugs through a logic bug-finding tool (e.g., PGFuzz [41]).
PGPATCH converts the LTL formulas to PPL formulas, and it
uses PPL formulas to create patches. We note that LTL syntax
includes several temporal relation operators [41], [82]. Yet,
most requirements in RV documentation can be described by
“always” operator (e.g., all formulas in PGFuzz are in the form
of “always”). Based on this observation, we designed PPL
formulas (Section II) to only support “always” operator. (ii)
Figure 2-(b) shows how PGPATCH allows developers to define
PPL formulas to fix logic bugs obtained from bug reports. In
this scenario, the bugs are not discovered using LTL formulas.
Preprocessor. This component translates LTL formulas to PPL
formulas if users input LTL formulas. It then verifies the syntax
and semantics of the formulas and classifies the formulas’ terms
to a variable, function, or an RV’s state types.

PGPATCH (2) leverages PPL formulas, which define an
RV’s correct behavior (1a). For instance, we represent the
correct sailboat pre-arming behavior (Section III-B) with: “If
armed is false and SAIL_ENABLE is 1 and WNDVN_TYPE is 0,
then pre_arm_checks is error”. PGPATCH starts its analysis
by creating an expression tree of the PPL formula (3a). It next
collects the formula’s terms by visiting the terminal nodes of
the expression tree. It then uses a term classification table (3b)

4

to classify each term into a code variable, function, or the RV’s
state types (4). For instance, in the sailboat’s formula, armed is
an RV’s physical state. SAIL_ENABLE and WNDVN_TYPE are the
RV’s configuration parameter states, and the pre_arm_checks
is a function in the source code.

Patch Type Analyzer. This component first maps the formula’s
terms to the variables and functions in the source code through
static analysis. It then verifies the mapping’s correctness
through dynamic analysis (5) and creates a term-source
code mapping table (5a). For example, PGPATCH maps the
WNDVN_TYPE to the integer type direction variable of the
AP_WindVane class. It then changes the WNDVN_TYPE parameter
on an RV simulator and checks whether the direction variable
has the same value as the changed WNDVN_TYPE parameter value
to confirm the mapping is correct. PGPATCH then finds the
required patch type to fix a specific logic bug since each patch
type requires a different method for patch location identification
and patch creation.

PGPATCH classifies each logic bug into one of the five patch
types: (1) ADD, (2) REUSE, (3) UPDATE, (4) DISABLE, and (5)
CHECK (6). For this, it leverages (i) the preconditions that must
be satisfied to trigger the bug, and (ii) whether the bug occurs
only at a specific flight stage (e.g., after takeoff) or at all flight
stages. For instance, PGPATCH classifies Sailboat Pre-Arming
Bug (Section III-B) to ADD patch type because: (1) the RV
control software does not raise an error even though the RV’s
states satisfy the preconditions to produce the desired error
message, and (2) the error message is not returned regardless
of flight stages (Detailed in Section V-C). This hints that the
developers miss inserting an “if statement” to raise the error
message, resulting in the bug.

Patch Generator. This component finds the patch location and
generates the patch. PGPATCH identifies the patch location
using a pattern matching approach (7), which matches the code
locations to the formula’s terms. For example, in the sailboat
policy, the left side of “then” is the precondition to trigger
a post-condition, raising a pre_arm_checks error. PGPATCH
obtains the bool pre_arm_checks() function as the potential
patch location because the post-condition (pre_arm_checks) is
mapped to it. It next creates an access pattern mapping table rep-
resenting how to access the variables and functions from the in-
ferred patch location (7a). For example, the code snippet in the
AP_Arming class calls the rover.g2.windvane.enabled()
function to access the direction variable in the AP_WindVane
class. It then creates a patch using the identified patch type,
access pattern mapping table, and location (8). For example,
it produces the following code to fix the sailboat’s pre-arming
misbehavior: “if (rover.g2.sailboat.sail_enable() == true &&
rover.g2.windvane.enabled() == false){return false;}”.

Patch Verifier. The last component is the Patch Verifier, which
deploys the created patch into the target source code and creates
a binary executable file by compiling the patched source code.
It then tests the patch using the simulator to see whether
the patch fixes the bug and does not interfere with the RV’s
intended functionality and performance (9).

Failsafe on FS_BATT

_ENABLE

2

Term Type

Failsafe Function

FS_BATT

_ENABLE

State(C)

home_

distance

Variable

mode State(P)

<Term classification

table><Terms in an expression tree>

mode RTL≥

home_

distance

2

then

and

and

is is

is

Fig. 3: Illustration of an expression tree constructed from
Battery Fail-safe formula (Section III-C) and term classification
table. State (P) and State (C) denote a physical state and
configuration parameter state, respectively.

B. Preprocessor

The Preprocessor translates LTL formulas to PPL formulas
if users input LTL formulas to PGPATCH. It then verifies PPL
formulas’ syntax and classifies the formulas’ terms to variables,
functions, or RV’s states. To do so, it uses a term classification
table (3b Figure 1). The table’s each row consists of a term
and type, where the type can be a variable, function, or state,
as shown in Figure 3.

1) Checking Syntax Errors in PPL Formulas: PGPATCH
creates an expression tree of a given PPL formula and checks
whether syntax errors exist in the formula. If it detects any
syntax error, it refuses to generate a patch. If there are no errors,
it converts the formula to an expression tree and continues
with the next steps. To illustrate, the expression tree of the
Battery Fail-safe’s formula1 is presented in Figure 3.

2) Checking Semantic Errors in PPL Formulas: Users could
unintentionally input formulas that contain semantic errors,
e.g., a formula that contradicts another existing formula. To
resolve this problem, the Preprocessor verifies whether an added
formula contradicts any existing formulas. For instance, if a user
inputs the formula: “if Statei is true, then Behaviori is on”,
PGPATCH can detect that this formula contradicts the following
existing formula: “if Statei is true, then Behaviori is off”.
In this case, PGPATCH produces an error message and denies
creating a patch corresponding to the newly added formula.

3) Checking Validity of Terms: In this step, PGPATCH
achieves two goals: (i) classifying terms into variable, function,
or RV state types, and (ii) detecting any syntax error in the
terms. PGPATCH first classifies each term into “variable”,
“function”, or “RV state” types based on the term classification
table, as shown in Figure 1 (3b) and Figure 3. PGPATCH
creates the table from RV source code and documentation
(Detailed in Section VI). If a term does not match any type in
the term classification table, PGPATCH considers it as a syntax
error and stops generating the patch.

C. Patch Type Analyzer

PGPATCH maps terms to variables/functions in the source
code to determine the most appropriate patch type to fix a bug.

1If Failsafe is on and FS_BATT_ENABLE is 2 and home_distance is
more than 2, then mode is RTL

5

Term Mapped variables / functions on source code

failsafe

void Copter::failsafe_ekf_event() in ekf_check.cpp

void Copter::failsafe_ekf_off_event() in ekf_check.cpp

void Copter::failsafe_battery_event() in events.cpp

void Copter::failsafe_gcs_check() in events.cpp

…

FS_BATT_ENABLE int failsafe_battery_enabled in Parameters.cpp

home_distance
float home_distance in AC_Fence.h

int home_distance in Copter.h

Fig. 4: Illustration of a term-source code mapping table.

1) Mapping Terms to Source Code: PGPATCH infers each
term’s type as detailed in Section V-B3. However, finding
a patch location and generating the patch requires mapping
the terms to specific variables/functions in the source code.
To address this, PGPATCH matches each term with vari-
ables/functions in the source code via name-based matching.
Specifically, when the term and the variable have the same
name, they are matched. For instance, PGPATCH extracts
Failsafe, FS_BATT_ENABLE, and home_distance terms from
the created expression tree of Battery Fail-safe (Figure 3). It
then constructs a term-source code mapping table (Figure 4),
which consists of each term and mapped variables/functions.

We found that a term can be mapped to multiple variables
that have the same name in the source code. For example, the
home_distance term is mapped to two different variables, float
home_distance and int home_distance, as they have the
same variable name. Yet, not all mapped variables are related
to the logic bugs, e.g., float home_distance is not related
to the home_distance term to trigger the bug. To filter the
unrelated variables, PGPATCH performs a dynamic analysis on
an RV simulator: (1) it annotates the mapped variables in the
source code, (2) it compiles the annotated code and uploads a
new binary file into the simulator, (3) it executes the inputs
that trigger a logic bug, e.g., moving an RV to another location,
and (4) it filters out the variables that do not change their
value based on the executed inputs. For example, the float
home_distance variable always has a zero value regardless of
the executed bug-triggering inputs because ArduPilot changes
this value only if geo-fence is activated [25]. Thus, PGPATCH
excludes the float home_distance variable from the term-
source code mapping table (Figure 4).

2) Identifying a Patch Type: Different logic bugs require
a separate technique for inferring their patch locations and
generating the patches. To identify the patch type that fixes
the logic bug, PGPATCH first executes inputs to trigger the
logic bug on the simulator and collects the following run-time
information: (1) the violated PPL formula’s propositions for
DISABLE, (2) the configuration parameters’ values for CHECK,
(3) the preconditions that trigger a logic bug for UPDATE, and
(4) the flight stage at which the bug occurs for ADD and REUSE.
PGPATCH then extracts preconditions and post-conditions from
the violated formula. For instance, in the PPL formula “if
Statei is true, then Behaviori is on”, the precondition is the
left side of the “then” keyword, i.e., (Statei = true), and the
post-condition is the right side of “then”, i.e., (Behaviori = on).
Using this information, PGPATCH determines the patch type
by traversing the flow diagram (Figure 12 in Appendix).

Iteration Test case

1

1) ANGLE_MAX = 5

2) Arming

3) Takeoff

4) Navigating way points

2

1) Arming

2) ANGLE_MAX = 5

3) Takeoff

4) Navigating way points

… …

Flight stages

Test

Case 1

1) ANGLE_MAX = 5

2) Arming

3) Takeoff

4) Navigating waypoints

Flight stages

Test

Case 2

1) Arming

2) ANGLE_MAX = 5

3) Takeoff

4) Navigating waypoints

Fig. 5: An example of test cases created from Algorithm 1.

Disabling a Statement (DISABLE). PGPATCH classifies the
logic bug to be patched as DISABLE type when a violated PPL
formula and the RV’s states satisfy the following two conditions:
(i) the formula’s post-condition explicitly represents a state
that must not be changed, and (ii) the RV’s states satisfy
the formula’s preconditions but violate the post-conditions.
This is because disabling a statement can prevent triggering
the incorrect state change that violates the formula’s post-
condition. For instance, for the Tilt Angle Bug (Section III-D),
PX4 limits the tilt value during the LAND and RTL flight
modes, violating the formula2. PGPATCH classifies this bug
into DISABLE because the logic bug causes a change in
_constraints.tilt during LAND or RTL modes even though it
must not be changed according to the policy’s post-condition
(i.e., _constraints.tilt= disabled).
Checking Valid Parameter Ranges (CHECK). PGPATCH
classifies logic bugs as CHECK when an out-of-range parameter
value causes a policy violation. PGPATCH obtains the valid
values of parameters from the RV’s documentation and checks
whether an input, which contains a value outside its valid range,
causes a policy violation. For example, COM_POS_FS_DELAY
parameter’s valid range is from 1 to 100. Yet, PX4 does not
check the parameter’s value, which causes PX4 to fail to
trigger the GPS fail-safe when it loses GPS signals. PGPATCH
classifies this bug as CHECK because the parameter contains a
value outside its valid range.
Updating a Statement (UPDATE). PGPATCH classifies a logic
bug into the UPDATE patch type if an RV’s states do not satisfy
all of the preconditions in a PPL formula before triggering a
behavior. The reason is that an incorrect “if statement” makes
the RV prematurely trigger a behavior, which can be fixed by
updating the “if statement”. For example, ArduPilot conducts
pre-flight checks before arming the motors. The pre-flight
ensures an RV’s current states are ready to start a flight. Yet,
the RV software must temporarily stop the pre-flight check
when the RV conducts sensor calibration as the pre-flight detects
strange sensor values during the calibration and incorrectly
concludes that the RV cannot make a fly. This bug violates the
following policy: “Iff armed is false and calibration is
false, then preflightCheck is on”. PGPATCH classifies this
case as UPDATE because the RV triggers the pre-flight behavior
although it satisfies only the “armed is false” precondition.
Distinguishing between ADD and REUSE. If a logic bug is
not classified as DISABLE, CHECK, or UPDATE, PGPATCH uses
a custom algorithm (Algorithm 1 in Appendix) to further
determine the patch types of ADD and REUSE. The algorithm
takes two types of inputs: (1) a default mission plan that consists
of arming, takeoff, navigating waypoints, return to home
position, and landing. (Missionset) and (2) bug-triggering

2If mode is LAND or mode is RTL, then _constraints.tilt is disabled

6

inputs (Inputbug). We adopted a default mission plan from
ArduPilot to create the Missionset

3.
The algorithm works as follows: (1) It creates test cases

consisting of user inputs to trigger the bug and the default
mission plan. Each test case triggers the logic bug at a different
flight stage. (2) It executes a user input of a created test case on
a simulator. (3) It checks whether a policy violation (i.e., logic
bug) occurs after executing each user input. (4) It logs the
RV’s physical states when the logic bug occurs. (5) It repeats
(2)-(4) for each test case. For instance, an input to trigger
the logic bug (Inputbug) is ANGLE_MAX = 5. In the first test
case, PGPATCH triggers the logic bug at the first flight stage,
as shown in Figure 5. In the second test case, the logic bug
is triggered at the second flight stage. PGPATCH triggers the
logic bug at all flight stages to determine the patch type.
Adding a Condition Check (ADD). If the algorithm outputs
that a policy violation occurs regardless of the flight stages,
PGPATCH classifies it into ADD patch type. This is because an
RV’s control program does not trigger a behavior though the
RV’s states satisfy the preconditions to trigger the behavior.
For the Sailboat Pre-Arming Bug (Section III-B): “If armed
is false and SAIL_ENABLE is 1 and WNDVN_TYPE is 0, then
pre_arm_checks is error”, ArduPilot does not produce a
pre-arming error when the formula’s preconditions are satisfied
(i.e., armed is false, SAIL_ENABLE is 1, and WNDVN_TYPE
is 0). This means ArduPilot does not have an “if statement” to
trigger the behavior; thus, it is classified as ADD.
Reusing an Existing Code Snippet (REUSE). If the algorithm
outputs that an RV does not trigger a behavior after a specific
flight stage, we consider such a case as REUSE. For instance,
ArduPilot must return an error message to the ground control
system when ANGLE_MAX parameter has a value outside its valid
range. This policy is formally expressed as “If ANGLE_MAX is
less than 1000 or ANGLE_MAX is more than 8000, then prearm

is error”. The algorithm’s first test case (See Figure 5) does
not lead to a logic bug. However, the second test case causes a
formula violation because ArduPilot does not check the valid
values of ANGLE_MAX parameter after the arming flight stage.
This bug leads to unstable attitude control or even crashing on
the ground. PGPATCH classifies this case into REUSE because
the logic bug occurs only after the arming flight stage.

D. Patch Generator

To generate a patch, PGPATCH first creates an access
pattern mapping table representing how PGPATCH accesses
the mapped variables and functions in the term-source code
mapping table, and then infers the patch location. PGPATCH
uses this table to create and insert the patch.

Below, we first describe how to create the access pattern
mapping table (Section V-D1). We then explain how PGPATCH
finds the patch location and generates a patch per each patch
type (Section V-D2 – Section V-D6).

1) Creating an Access Pattern Mapping Table: To infer
how to access the mapped variables and functions in a patch

3ArduPilot provides mission plans for all RV types, which can be used by
other RV control programs if they follow the MAVLink protocol [53].

Term Mapped variables / functions on source code

home_distance
float home_distance in AC_Fence.h

int home_distance in Copter.h

WPNAV_RADIUS float _wp_radius_cm in AC_WPNav class

failsafe

void Copter::failsafe_ekf_event() in ekf_check.cpp

void Copter::failsafe_ekf_off_event() in ekf_check.cpp

void Copter::failsafe_battery_event() in events.cpp

void Copter::failsafe_gcs_check() in events.cpp

…

Term
Mapped variables / functions

on source code
How to access?

armed bool armed in AP_Notify.h AP_Notify::flags.armed

SAIL_ENABLE int enable in Sailboat.h rover.g2.sailboat.sail_enabled()

WNDVN_TYPE int _direction_type in AP_WindVane.h rover.g2.windvane_enabled()

Term
Mapped variables / functions

on source code
How to access?

armed bool armed in AP_Notify.h AP_Notify::flags.armed

SAIL_ENABLE int enable in Sailboat.h rover.g2.sailboat.sail_enabled()

WNDVN_TYPE int _direction_type in AP_WindVane.h rover.g2.windvane_enabled()

Term
Mapped variables / functions

on source code
How to access?

armed bool armed in AP_Notify.h AP_Notify::flags.armed

SAIL_ENABLE int enable in Sailboat.h rover.g2.sailboat.sail_enabled()

WNDVN_TYPE int direction in AP_WindVane.h rover.g2.windvane_enabled()

Fig. 6: An access pattern mapping table for generating a patch.

location, PGPATCH conducts the following four steps. First, it
merges all source files of an RV control software. Second, it
extracts mapped variables and functions from the term-source
code mapping table (Figure 4). Third, if a patch location is in
the same class as the mapped variables/functions, it directly
accesses them. Otherwise, PGPATCH leverages encapsulation
in object-oriented programming and uses public getter/setter
functions to access the private variables. Specifically, PGPATCH
finds get, set, enabled, and disabled functions that contain the
mapped private variables. To illustrate, when the WNDVN_-
TYPE term is mapped to the direction variable (Figure 6),
it searches for a function that uses one of the above function
names (i.e., either getter or setter) and returns the mapped
private variable. It finds the following function that returns the
mapped direction’s value.
bool AP_WindVane::enabled(){return direction!=WINDVANE_NONE;}

Lastly, PGPATCH learns how to access the mapped variables
and functions from the merged source code. PGPATCH searches
how other classes call the found function, e.g., enabled().
For example, other classes in ArduPilot call enabled()
via rover.g2.windvane.enabled(). However, there may be
multiple patterns to access a single variable or function from the
source code. To choose the correct one, PGPATCH first inserts
a found access pattern to a patch location, then, PGPATCH
verifies which access pattern is the correct one to access the
mapped variable or function.

2) Adding a Condition Check (ADD): To generate patches
for ADD patch type, PGPATCH inserts a missing “if statement”
at the right location in the source code.

To find the patch location, PGPATCH extracts terms from
a PPL formula’s post-condition part. It then maps the terms
to variables and functions in the source code, and uses the
mapped variables and functions as potential patch location
candidates. For example, in the sailboat policy (Section III-B):
“If armed is false and SAIL_ENABLE is 1 and WNDVN_TYPE
is 0, then pre_arm_checks is error”, the left-hand side of
the “then” keyword is the preconditions to trigger an action
(i.e., pre_arm_checks must return false). Further, the pre_-
arm_checks term is mapped to the bool pre_arm_checks()
function. Thus, PGPATCH infers the bool pre_arm_checks()
function as the patch location. If terms of a PPL formula’s
post-conditions are mapped to variables instead of a function,
PGPATCH considers functions in which the mapped variables
are used as patch location candidates.

To generate the patch, PGPATCH first switches terminal
nodes of the expression tree to the found access patterns, as
shown in Figure 7. It then generates a patch based on the
updated expression tree, conducting an in-order traversal of
the expression tree to create an ‘if statement”. For example,
it creates the “if statement” shown in Listing 6 from the
expression tree in Figure 7. We note that PGPATCH inserts

7

is

is is

armed false SAIL_

ENABLE

1

WNDVN_

TYPE

0

Term How to access?

armed armed

SAIL_

ENABLE
rover.g2.sailboat.sail_enabled()

WNDVN_

TYPE
rover.g2.windvane_enabled()

and

and

Fig. 7: Illustration of generating the patch for ADD patch type.

bool AP_Arming_Rover::pre_arm_checks(...) {
if (armed == false && rover.g2.sailboat.sail_enabled() == 1

&& rover.g2.windvane.enable() == 0) {
return false; }

Listing 6: Fixing the fail-safe bug in sailboat (Section III-B).

the formula’s post-conditions (i.e., actions to be executed) into
the basic block of the created “if statement”. For example,
it inserts return false to the basic block of the “if statement”
as the formula’s post-condition (pre_arm_checks is false)
explicitly denotes returning false in pre_arm_checks function.

3) Reusing an Existing Code Snippet (REUSE): Logic bugs
in REUSE patch type cause an RV control program not to
perform a behavior after a specific flight stage although the
RV’s states satisfy preconditions to activate the behavior. This
means that the program already has a code snippet to trigger
the correct behavior, but it stops activating the behavior after
a specific flight stage. Thus, PGPATCH reuses the existing “if
statement” code block to activate the desired behavior in all
flight stages. For example, the PPL formula “If ANGLE_MAX is
less than 1000 or ANGLE_MAX is more than 8000, then prearm

is error” defines that ANGLE_MAX configuration parameter in
ArduPilot must have a valid range from 1K to 8K. However, a
logic bug occurs because ArduPilot calls the following function
to check whether the ANGLE_MAX parameter has a valid value
only before the arming stage.
bool AP_Arming_copter::parameter_checks() {
if (angle_max < 1000 || angle_max > 8000) return false; }

In these cases, PGPATCH reuses a code snippet that already
exists in the source code to generate the patch. Specifically,
PGPATCH first finds the existing code snippet, and then inserts
the identified code block into a control loop to make the RV
execute the behavior at all flight stages. To detail, PGPATCH
first extracts all terms from the violated formula and maps
the terms into variables in the source code, e.g., ANGLE_-
MAX is mapped to the angle_max variable. PGPATCH also
extracts the formulas’ constant and Boolean values, e.g., it
obtains the following terms: angle_max, 1000, and 8000 from
the ANGLE_MAX policy. PGPATCH next creates the LLVM
bitcode from the source code, finds all functions, including
an “if statement” (i.e., “cmp” instruction), and obtains def-use
chains of all the “cmp” instructions and their operands from
these functions. PGPATCH finds an “if statement” that consists
of the obtained terms (angle_max, 1000 and 8000).

For instance, in the example shown in Figure 8, PGPATCH
performs the following, it finds a def-use chain of %cmp29
instruction (1), matches one of the obtained terms (i.e., 8000)
with the operand (i.e., the constant value stored in 0x3110000)
(2), backtracks the def-use chain of another operand in the

%11,

0x3110138

8000,

0x3110000

[%cmp29, 0x31oe830, 0x31oe027]

0x31oe830

%call11

0x310ff28

[%11, 0x3110138, 0x31oe830]

0x3110138

%angle_max

0x3110080

0x310ff28

[%call11, 0x310ff28, 0x3110138]

[definition, write access, read access]

: operand’s name and address








 

: def-use chain for instruction

Fig. 8: Backtracking the def-use chains of a %cmp instruction.

void Copter::one_hz_loop() {
if (copter.aparm.angle_max < 1000

|| copter.aparm.angle_max > 8000) // raise an error

Listing 7: Fixing the ANGLE_MAX bug.

%cmp29 instruction (%11 in 0x3110138) (3), matches the
obtained terms with the operand %call11 (4), backtracks
an operand’s def-use chain %call11 (5), matches one of the
obtained terms (i.e., angle_max) with the operand %angle_max
(6), and returns the function that includes %cmp29 because
PGPATCH identifies the target “if statement”. Thereafter
PGPATCH finds the “if statement” in the parameter_checks()
and it inserts the identified code snippet into a control loop,
which is called periodically. We note that PGPATCH requires
users to designate the control loop.

Lastly, PGPATCH changes the access patterns for variables
and functions in the found code snippet because the patch
location is in a different class from the found code snippet.
For example, PGPATCH extracts access patterns from the
access pattern mapping table and switches angle_max to
copter.aparm.angle_max, as shown in Listing 7. We note
that PGPATCH also changes the ‘return false;’ statement
because the function at the patch location is type void. In such
a case, PGPATCH prints an error message as a PPL formula’s
post-condition (i.e., an action to be executed).

4) Checking Valid Ranges of Parameters (CHECK): To detect
and prevent the parameter values outside their valid range, we
use the PPL formulas with the following structure. “Mini is less
than Parami_value and Maxi is more than Parami_value”, where
i denotes the i-th configuration parameter. To fix this type
of logic bugs, PGPATCH’s patch forces the parameter to have
a valid value before a code statement refers to it. PGPATCH
performs the following steps: (1) It obtains the name of the
configuration parameter triggering a logic bug from the given
user inputs. (2) It maps the parameter name to a variable in
the source code. (3) It finds all code statements which refer to
the identified variable. (4) It learns how to access the identified
variable from the access pattern mapping table (Figure 6). (5)
It inserts an “if statement” checking for the parameter’s value.
PGPATCH assigns the default parameter value to the identified
variable if it has a value outside the valid range.

PGPATCH obtains the valid ranges and default values of con-
figuration parameters by parsing the XML files in ArduPilot [7],
PX4 [65], and Paparazzi [58]. For example, in GPS Fail-Safe
Bug (Section III-A), COM_POS_FS_DELAY configuration param-
eter’s valid range in PX4 is between 1 and 100. PGPATCH
first maps the parameter to the _param_com_pos_fs_delay
variable. PGPATCH then inserts an “if statement” before

8

bool Commander::check_posvel_validity (...) {
if (_param_com_pos_fs_delay.get() < 1 ||

_param_com_pos_fs_delay.get() > 100) {
// Assign a default value
_param_com_pos_fs_delay = 1; }

Listing 8: Fixing the GPS fail-safe bug (Section III-A).

void Copter::failsafe_battery_event(void) {
else if (g.failsafe_battery_enabled == 2
&& home_distance > 2) // Switch to RTL

Listing 9: Fixing the battery fail-safe bug (Section III-C).

any statement referring to the _param_com_pos_fs_delay
variable, as shown in Listing 8.

5) Updating a Statement (UPDATE): RV software must
trigger post-conditions only when an RV’s current states satisfy
preconditions. However, logic bugs in UPDATE patch type
trigger a behavior although the RV satisfies only a part of
the preconditions. This means that the RV software uses
an incorrect “if statement”. Hence, PGPATCH replaces the
incorrect “if statement” with a new one.

PGPATCH first extracts the terms of the violated formula’s
preconditions. For example, in Battery Fail-Safe Bug (Sec-
tion III-C), preconditions are “Failsafe is on”, “FS_BATT_-
ENABLE is 2”, and “home_distance > 2”. It obtains Failsafe,
FS_BATT_ENABLE, and home_distance as the terms. Second,
it extracts the variables and functions from the term-source
code mapping table (Figure 4), e.g., FS_BATT_ENABLE and
home_distance are mapped to failsafe_battery_enabled
and home_distance variables, respectively. Third, it finds an
“if statement” that uses the mapped variables as operands.
For this, it backtracks def-use chains of %cmp instructions of
the unpatched program’s bitcode. The backtracking method
is the same as Section V-D3. Fourth, from the access pattern
mapping table, it learns how to access the mapped variables
in the found patch location, e.g., we can use g.failsafe_-
battery_enabled to access the FS_BATT_ENABLE term in
the found patch location (failsafe_battery_event function).
Lastly, it conducts in-order traversal of the expression tree to
create a new “if statement”. It then replaces the incorrect ”if
statement” with the new one (Listing 9). Yet, this patch cannot
fix Battery Fail-safe Bug. We will detail how PGPATCH’ Patch
Verifier corrects the patch in Section V-E.

6) Disabling a Statement (DISABLE): Logic bugs in
DISABLE patch type cause an RV software to change a state
although a PPL formula explicitly represents the state that
must not be changed. It means that the RV software has
unnecessary code statements that change the state. Hence,
PGPATCH finds the statements and comments them out to
fix these logic bugs. PGPATCH first extracts terms from
the formula’s post-condition part, e.g., in Tilt Angle Bug
(Section III-D), “_constraints.tilt is disabled” is the
violated formula’s post-condition. It obtains the _constraints.tilt
term from the formula. Second, it obtains mapped variables
from the term-source code mapping table, e.g., _constraints.tilt
term is mapped to _constraints.tilt. Third, it finds all
statements that assign a value to the mapped variables, e.g., _-

constraints.tilt = a value. Lastly, it comments out the
found statements. PGPATCH leaves a variable declaration and
disables only an assignment part if a found statement includes
declaration and assignment at the same time, e.g., it comments
out statements at lines 2 and 5 in Listing 5.

E. Patch Verifier

PGPATCH checks whether the patch fixes the logic bug for
the given user inputs that trigger the bug and performs patch
correction if needed. It then verifies (1) the bug does not occur
in other missions and environmental conditions (i.e., testing
the patches in different contexts), and (2) the patch does not
break an RV’s functionality and degrade its performance.

1) Patch Correction: We noticed some patches could not
fix the bugs due to inconsistencies between metric units used
in PPL formulas and the units in the source code. Thus, we
developed a patch correction component to address these issues.
Patch correction first checks whether the bug persists on the
RV simulator with the given user inputs after the patch is
deployed. If PGPATCH still detects the bug while executing
the bug-triggering inputs on an RV simulator, PGPATCH tries
to fix the generated patch by fixing the unit inconsistencies.
Fixing Unit Inconsistency. PGPATCH’s patch generation is
based on PPL formulas, which do not include the units for the
constants. When PGPATCH generates a patch, it makes a guess
on the unit of the constants (e.g., meter or centimeter). If the
guess is incorrect, PGPATCH attempts to fix the generated patch.
Specifically, when the term’s name implies a distance variable
(e.g., altitude, height, and elevation), PGPATCH converts the
distance variable into another unit (i.e., multiplies or divides
it by the powers of 10). It then tests whether the bug is fixed
with the selected unit.

To illustrate, in the Battery Fail-safe Bug, PGPATCH creates
a patch (Listing 9). This patch does not prevent the targeted
logic bug as home_distance uses centimeters, while the
constant number 2 in the formula is in meters. After the patch
correction step, PGPATCH generates the following patch:
else if (g.failsafe_battery_enabled == 2

&& (home_distance/100) > 2)

2) Testing the Completeness of Patches: We consider that a
patch is complete if the following three conditions are satisfied:
(1) The inputs that previously triggered the bug do not lead to
the bug in the patched program (C1). (2) The patched program
does not lead to the bug even in different contexts, e.g., different
missions and altitudes (C2). (3) The patch does not break an
RV’s existing functionalities and degrade performance (C3).

To verify these conditions, PGPATCH runs the patched pro-
gram on an RV simulator using multiple scenarios. Particularly,
to check C1 and C2, we leverage the “Autotest suite” [12]
from ArduPilot and extend it to PX4 and Paparazzi. ArduPilot
developers use the test suite to test functionalities after they
update their RV software. Whenever the “Autotest suite” tests
each scenario, PGPATCH executes the inputs given by users
that trigger the logic bug. If PGPATCH does not detect any
logic bug, it runs PGFuzz [41] to find a new input set to trigger
the logic bug. If PGPATCH detects a logic bug, this means the
generated patch does not fully fix the bug.

9

To verify C3, PGPATCH checks if the patched program
violates any existing formulas obtained from PGFuzz while
running PGFuzz for checking C1 and C2. Additionally, it runs
the “Autotest suite” on the unpatched and patched programs.
It then compares the RV’s physical states (e.g., roll, pitch, and
yaw) from each execution. We obtain the states from stored
log files after executing the “Autotest suite”. We note that a
correct patch may change some states since it fixes a bug.
Thus, PGPATCH’s Patch Verifier must know which states are
expected to be changed by the patch. To address this, we use
PGFuzz’s profiling engine [41] that automatically finds states
related to a given formula (StateC). If PGPATCH detects either
a policy violation or an unexpected changed state that is not
included in StateC, we consider that the patch interferes with
the program’s functionality and performance.

VI. IMPLEMENTATION

Preprocessor. We write 376 lines of code (LoC) in Python
using the PyParsing v.2.4.7 library [70] to implement the
translator which converts (i) LTL formulas to PPL formulas and
(ii) PPL formulas to LTL formulas. The syntax analyzer (2 in
Figure 1) is implemented in 279 LoC in Python. To create (i)
the term classification table (3b Figure 1) and (ii) candidate
terms for users, we obtain variable and function names in the
flight control programs using LLVM v.10.0.0 [50]. We extract
the variable and function names through an LLVM pass that
consists of 217 LoC in C. We manually construct a list of RV
physical states from RVs’ documentations [11], [59], [68].
Patch Type Analyzer. We write 429 LoC in Python to
implement the “Terms and source code mapper” and 741 LoC
in Python for “Patch type analyzer” components (5 - 6 in
Figure 1) on top of the Pymavlink v2.4.9 and PPRZLINK
libraries [63], [69]. These libraries enable PGPATCH to com-
municate with a simulated vehicle through MAVLink [53]
commands. To simulate RVs, we choose Software in the Loop
(SITL) [6] for ArduPilot, jMAVSim [36] for PX4, and NPS [57]
for Paparazzi.
Patch Generator. The patch locator is implemented as 239
LoC in Python. We write 457 LoC in C to collect def-use
chains of variables through an LLVM pass. To parse XML files
which contain valid ranges and default values of configuration
parameters, we write 95 LoC in Python.
Patch Verifier. To deploy patches to RV software, we write
114 LoC in Python. To test the patches’ completeness, we
adapt the “Autotest suite” of ArduPilot v.4.0.3 [12]. It consists
of four scripts in Python for each RV type. The “Autotest
suite” consists of 4,911 LoC for the multi-copters, 5,435 LoC
for the rover, 1,982 LoC for the fixed wings, and 729 LoC
for the submarines. To run the “Autotest suite” on PX4, we
modify 295 LoC for the multi-copter, 279 LoC for the rover,
and 149 LoC for the fixed wing as they differently implement
the MAVLink protocol. Further, to run the “Autotest suite”
on Paparazzi, we have to modify 1,086 LoC since Paparazzi
uses PPRZLINK instead of Pymavlink. Finally, we manually
created a list of distance variables to fix unit inconsistencies.

Selected bugs Patchable bugs Fixed bugs
ArduPilot (A) 70 38 32

PX4 (PX) 70 27 24
Paparazzi (PP) 70 29 21

Total 210 94 77

TABLE I: Details of the quantitative evaluation for bugs from
the commit history of ArduPilot, PX4, and Paparazzi.

Bug origin Fuzzing Commit history
RV SW A PX PP A PX PP

Total

ADD 1 0 0 13 6 14 34
REUSE 44 0 0 0 0 0 44

UPDATE 0 0 0 15 18 4 37
DISABLE 1 0 0 4 0 3 8

Patch
type of
fixed
bugs CHECK 94 24 17 0 0 0 135

Unfixable 10 12 0 6 3 8 39
Total 150 36 17 38 27 29 297

Success rate 93.3% 66.7% 100% 84.2% 88.9% 72.4% 86.9%

TABLE II: Summary of the quantitative evaluation on ArduPilot
(A), PX4 (PX), and Paparazzi (PP).

VII. EVALUATION

A. Experiment Setup

We evaluate PGPATCH on the three most popular flight
control software, ArduPilot, PX4, and Paparazzi. We collect
a total of 2,268 logic bugs. In particular, we find 292 logic
bugs reported by previous RV fuzzing research papers [41],
[43]. We refer to these logic bugs as DataSetF. Further, we
collect 1,976 logic bugs by searching in the GitHub commit
history of the three considered RV control programs [8], [59],
[64]. We refer to these logic bugs as DataSetH.

Among these bugs, we select bugs that satisfy the following
criteria: This is because outdated bugs cannot be reproduced on
the same version of the operating system and RV simulator. (1)
They are reported within the last two years because outdated
bugs cannot be reproduced on the same version of the operating
system and RV simulator. (2) They can be triggered by sending
user inputs to a simulated vehicle. (3) They belong to one of
the five patch types that PGPATCH supports.

We select a total of 297 logic bugs from DataSetF and
DataSetH. Specifically, by applying these filtering rules, we
obtain 203 logic bugs from DataSetF. Most of the bugs are
classified as CHECK (74.6%) and REUSE (24.3%). Further, to
choose logic bugs from DataSetH, we first randomly select 210
bugs, then, we obtain 94 (out of 210) logic bugs by applying
the above filtering rules, as shown in Table I. To fix bugs
from DataSetF, we reuse 29 LTL formulas from PGFuzz [41].
Additionally, we create 94 PPL formulas4 ourselves to fix logic
bugs from DataSetH. Out of these 123 formulas, 4 formulas
fixed multiple bugs, while the others can fix one bug each (as
detailed in Appendix G).

We run our evaluation using a desktop machine with an Intel
i5-10400 CPU, 64 GB RAM, and Ubuntu 18.04 64-bit.

B. Quantitative Evaluation

After the patch passes the patch verification process in
PGPATCH’s patch verifier, we manually examine the patch to
check its correctness. When PGPATCH aborts patch generation

4These 94 rules are available online: https://github.com/purseclab/PGPatch/
blob/main/policy_list.pdf

10

https://github.com/purseclab/PGPatch/blob/main/policy_list.pdf
https://github.com/purseclab/PGPatch/blob/main/policy_list.pdf

Bug origin Fuzzing Commit history
A PX PP A PX PP

Fixed bugs 140 24 17 32 24 21
Performance damage 0 0 0 0 0 0
Different from
developers’ patches N/A N/A N/A 2 0 0

Total 181 77

TABLE III: Summary of the qualitative evaluation.

or incorrectly generates a patch, we also manually analyze it
to identify what makes PGPATCH fail.

As shown in Table II, PGPATCH correctly fixes 258 out
of 297 logic bugs (86.9%). Specifically, PGPATCH’s Patch
Generator component initially fixes 238 out of 297 logic bugs.
PGPATCH’s Patch Verifier then detects 59 faulty patches and
corrects 20 of them by fixing unit inconsistencies.

PGPATCH fails to fix 39 logic bugs (Table II). Yet, we
note that failing to create correct patches does not mean
that PGPATCH deploys faulty patches. The false positives
represent the patches that PGPATCH considers correct, but they
are actually faulty (do not fix the bugs). Overall, PGPATCH
produces zero false positives because PGPATCH’s Patch Verifier
checks the correctness of the patches created by PGPATCH’s
Patch Generator before they are deployed. We found 39 logic
bugs to be faulty for the following reasons: (1) For four patches,
PGPATCH should have added third party libraries to compute
variables related to attitude control, but using third party
libraries is not supported, e.g., a patch [4] needs to add a math
library to apply a filter to the yaw speed state, (2) 23 patches
require implementing a new feature from scratch, e.g., a GitHub
commit [2] adds a new flight mode for Quad-plane type drones,
(3) For eight patches, PGPATCH needs to define a new variable,
loop, or function, e.g., [3], and (4) Four patches require
other complicated techniques, e.g., a GitHub commit [78]
adds/updates mathematical formulas. Creating correct patches
in these cases requires different kinds of analyses that we plan
to study in the future.
Patch Creation and Testing Overhead. PGPATCH takes on
average 12.5 minutes to create a patch. The Patch Verifier
then runs the “Autotest suite” [12] and PGFuzz [41] to verify
a patch. These steps take an average of 2.81 hours. In the
case of manual patching, the developers similarly leverage
the “Autotest suite”. They additionally conduct a manual code
inspection with other maintainers of RV software.

C. Qualitative Evaluation

To evaluate the correctness of patches generated by
PGPATCH, two authors of this paper manually examined each
patch. To determine if a patch is correct, we use the following
criteria: (1) When both authors agree that a patch created by
PGPATCH and a patch created by developers are semantically
the same, we consider that the patch created by PGPATCH is
correct. (2) Some developers’ patches contain supplementary
code lines, e.g., logging an RV’s states. We ignore such code
lines in developers’ patches. We believe that developers can
easily add such supplementary code to patches created by
PGPATCH. (3) To measure patches’ performance impact, we
compare performance between an unpatched version of the RV

software and patched software containing all patches created
by PGPATCH.
Patch Correctness. PGPATCH generates 181 correct patches
out of 203 bugs found by fuzzing works (DataSetF) [41],
[43], as shown in Table III. Specifically, the root cause of
179 out of 181 bugs is that the three RV programs do not
check valid ranges of parameters or use incorrect ranges.
To fix these bugs, PGPATCH extracted valid ranges for the
configuration parameters from the RV documentation in XML
file format, as explained in Section V-D4. For these bugs, the
developers updated the documentation to warn users not to
assign parameter values outside valid ranges, and, unfortunately,
have not yet included patches for them at the time of writing.

PGPATCH generates 77 correct patches for logic bugs found
from DataSetH. We found that 97.4% (75/77) of the patches
are semantically the same as developers’ patches. However, two
patches of the DISABLE patch type are semantically different
from developers’ patches. The reason for the difference is that
PGPATCH is not designed to remove existing variables and
functions while using the DISABLE patch type. We select such
a design choice to minimize damaging the functionalities of
RV programs. However, developers’ patches remove functions.
We note that the two patches created by PGPATCH still fix the
logic bugs. However, PGPATCH’s DISABLE patch type might
generate patches that contain unused code snippets.
Performance Impact. We evaluate the performance impact
of the 258 patches. After deploying all the generated patches
simultaneously (172 patches for ArduPilot, 48 patches for PX4,
and 38 patches for Paparazzi), we do not observe any significant
performance degradation.

D. Root Cause and Physical Effect of Bugs

The root causes of the 181 bugs reported by fuzzing
tools for RVs [41], [43] are mainly incorrectly checked
valid ranges of configuration parameters (96.1%) because the
fuzzers heavily mutated the parameters and discovered that
RV control programs do not properly check valid ranges of
the parameters. Out of 181 bugs, 176 bugs (97.2%) directly
lead to physical harm (i.e., either crashing or instability), and
5 bugs (2.8%) cause incorrect states. In contrast, we found
that 66 out of 77 bugs (85.7%) from GitHub commit history
occur due to either developers’ mistakes or unimplemented
features. Out of 77 bugs, 46 of them (59.7%) directly cause
physical harm. 31 (40.3%) either degrade flight performance
due to increased processing time, wasted memory space, and
incorrectly measured states (e.g., incorrect land detection) or
lead to incorrect states. We detail the root cause and physical
effects of bugs for each RV control program in Appendix C.

E. Generality of PGPATCH

To evaluate the generality of PGPATCH to other RV software,
we studied 11 open-source RV control programs commonly
used in research [24] and industry [21], [22], as shown
in Table IV. To port PGPATCH to other RV software, the
following conditions must be satisfied: (1) The RV software
uses a telemetry protocol (e.g., MAVLink [53]) between an
RV and a ground control station (GCS) so that PGPATCH can

11

RV
software Language

SLOC
(K)

Telemetry
protocol Simulation

Naming
convention Portable

Paparazzi [59] C 6,024 ✓ ✓ N/A ✓

PX4 [64] C/C++ 4,042 ✓ ✓ ✓ ✓

ArduPilot [8] C/C++ 3,999 ✓ ✓ ✓ ✓

Betaflight [14] C 1,825 ✓ ✓ N/A ✓

Cleanflight [18] C 1,668 ✓ ✓ N/A ✓

INAV [35] C 1,309 ✓ ✗ N/A ✗

LibrePilot [47] C 1,106 ✓ ✓ N/A ✓

Tau Labs [76] C/C++ 944 ✓ ✓ ✓ ✓

dRonin [23] C/C++ 817 ✓ ✓ ✓ ✓

Hackflight [29] C++ 34 ✗ ✓ ✓ ✗

multiwii [55] C++ 13 ✓ ✗ ✗ ✗

TABLE IV: A list of RV control programs used to evaluate
the generality of PGPATCH.

operate the RV through the telemetry protocol. (2) A simulator
supports the RV software. (3) The RV control program is
implemented in C/C++. (4) The software follows naming
conventions of getters and setters, e.g., get, set, enabled, and
disabled, if the software is implemented in C++. We manually
analyzed the documentation and source code of RVs, and
executed each RV software to test the first three conditions (1)-
(3). To verify (4), we randomly select private member variables
and check whether the RV software follows the naming
conventions (See Appendix D). We found that PGPATCH
can be ported to 8 of the 11 RV control programs with
minor engineering effort. However, PGPATCH cannot be easily
applied to INAV [35] and multiwii [55], and Hackflight [29] as
they either are not supported by any simulators or the telemetry
protocol is used for viewers instead of operating RVs.

F. Discovering and Fixing New Logic Bugs

PGPATCH, when used in conjunction with bug-discovery
tools (such as PGFuzz [41]), can help identify and fix new
bugs. In particular, we used PGPATCH together with PGFuzz to
leverage formulas for discovering new bugs and fixing them. To
demonstrate this use case scenario, we evaluate PGPATCH on
Paparazzi to find new logic bugs. We reused the five formulas
of PGFuzz and created an additional PPL formula that ensures
the RV’s correct operation under fail-safe mode. PGPATCH,
in conjunction with PGFuzz, ran for a day, and discovered a
total of 12 previously unknown logic bugs (See Table VIII
in Appendix E). PGPATCH fixed 6 logic bugs correctly, 4 ADD,
1 DISABLE, and 1 CHECK type. The other 6 bugs require creating
the features from scratch (e.g., requires implementing Hover
flight mode and Quad_Elie0 and Quad-Navstik vehicle types).
We have reported the discovered, previously unknown 12 bugs
to Paparazzi developers, and they acknowledged all the bugs.

G. User Study

In our user study, we aim to determine (1) the effort required
to create PPL formulas, and (2) how useful PGPATCH is in
patching the logic bugs compared to the manual patching effort
required by RV developers and users.
Recruitment Methods. We recruit from two different groups,
(1) RV software developers who actively fix reported bugs,
and (2) experienced RV users who create patches, which are
then reviewed and approved by developers before they are
applied to the RV software. 22 participants (6 developers and
16 users) applied for our study, and 18 (6 developers and 12

SD-formula 1.219183 1.145797 2.532794 4.051269 0.903804

0
1 1

0 0

4

0

2

0

2 2
3 3

5

3
2

3

5

2

5 5
4

5 5
4

3

5
4

5 5 5
4

5 5
4 4

5 4.6

A B C D E F G H I J K L M N O P Q R

A
vg

#
 o

f
co

rr
e

ct

a
ns

w
e

rs

Participant ID
Created patches Built formulas

14 12

22 31
20 20

2.2 1.2 3.3 6
2 3

0

40

80

120

Q1 Q2 Q3 Q4 Q5 Avg

T
im

e
 (

M
in

.)

Created patches Built formulas

Fig. 9: The number of correct answers per participant.

% of correct
answers

of incorrect
answers Reasons

Type
of fault

Patch 80.4%
37/46 9

Partially fix a bug (5)
SemanticWrong unit used (2)

Wrong patch location (1)
Compile error (1) Syntactic

Formula 91.1%
82/90 8

Wrong term (3)
SyntacticWrong verb (2)

Wrong value (1)
Missing post-condition (2) Semantic

TABLE V: Root causes of incorrect answers.

users) qualified based on their experience in finding bugs in
RVs and modifying RV software. We note that 1 of the 6 RV
developers is an official maintainer of ArduPilot. We detail the
demographic data of the participants in Appendix F.

1) Tasks: The user study consists of two tasks: (i) patching
five logic bugs in ArduPilot at the source code level, and (ii)
creating five PPL formulas used by PGPATCH to fix the five
logic bugs in ArduPilot. We randomly selected the five bugs
from our evaluation data set (Section VII-A). We randomized
the order of the tasks and bugs per participant. We limit the
maximum time to perform each task to 2 hours.
Task1: Manually Creating Patches. Task1 consists of five
questions. In each question, the participants are asked to read
a logic bug’s description and manually create a patch. The
description explains (1) the incorrect behavior caused by the
bug, (2) the correct behavior on the documentation, and (3)
how to trigger the bug on the simulator. We ask the participants
to submit the patch locations and source code files containing
their patches. After each question, the participants rate (i) their
confidence in their patch, and (ii) the difficulty in fixing the
logic bug on a five-point scale. We allow participants to give
up creating a patch and justify it by providing an explanation.
Task2: Building PPL Formulas. In Task2, we ask participants
to create five PPL formulas. We show an online self-tutorial to
participants that (1) explains the PPL syntax in Listing 1, (2)
provides two PPL templates in Section II, and (3) presents six
examples to demonstrate how to convert the descriptions of RV
behaviors into PPL formulas. This is because the participants
have experience with RV software but not with the PPL syntax.
The participants spent on average 8.4 minutes (min: 4.9 and
max: 11.8 mins) in the tutorial. In each question, we ask the
participants to read a description of the RV’s correct behavior
and create a PPL formula using a set of candidate terms. We
provide these candidate terms to participants since PGPATCH
outputs them to allow users to build formulas (Section II).
After each question, we ask the participants to (i) score their
confidence in their formula and how difficult it was to create
it, and (ii) explain any reason if they decide to give up.

12

SD-formula 1.367093 1.843807 2.167369 1.228613 1.030667
SD-patch 9.969909 4.859765 38.37802 28.16423 35.70525 ID

Q1 Q2 Q3 Q4 Q5 Avg A
Created patches 24 17 64 36 42 36.9 B
Built formulas 2 2 4 2 2 2.4 C

D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
Avg

Developers
Avg

Users
Avg

24
17

64

36
42

36.9

2 2 4 2 2 2.4
0

40

80

120

Q1 Q2 Q3 Q4 Q5 Avg

T
im

e
 (

M
in

.)

Created patches Built formulas

(a) Experienced RV users.
SD-formula 1.219183 1.145797 2.532794 4.051269 0.903804

0
1 1

0 0

4

0

2

0

2 2
3 3

5

3
2

3

5

2

5 5
4

5 5
4

3

5
4

5 5 5
4

5 5
4 4

5 4.6

A B C D E F G H I J K L M N O P Q R

A
vg

#
 o

f
co

rr
e

ct

a
ns

w
e

rs

Participant ID
Created patches Built formulas

14 12

22 31
20 20

2.2 1.2 3.3 6
2 3

0

40

80

120

Q1 Q2 Q3 Q4 Q5 Avg

T
im

e
 (

M
in

.)

Created patches Built formulas

(b) Experienced RV developers.
Fig. 10: The spent time per question.

SD-patch 4.33382 10.71463 21.01214 11.6087 7.469739
Developer

Q1 Q2 Q3 Q4 Q5 Avg
Created patches 14.1 12.5 22.4 31.1 20.3 20.0
Built formulas 2.2 1.2 3.3 6.4 2.0 3.0

User
Condifence-SD1.131773 0.585429
Difficulty-SD 0.835899 0.662411

ConfidenceDifficulty
Created patches 2.6 3.8
Built formulas 4.3 1.9

Dev
Condifence-SD1.222566 0.898146
Difficulty-SD 0.909212 0.689928

ConfidenceDifficulty
Created patches 3.8 2.5
Built formulas 4.0 2.1

2.6 4.33.8
1.9

Created patches Built formulas

S
co

re

Confidence Difficulty

3.8 4.0
2.5 2.1

Created patches Built formulas

S
co

re

Confidence Difficulty

(a) Experienced RV users.

SD-patch 4.33382 10.71463 21.01214 11.6087 7.469739
Developer

Q1 Q2 Q3 Q4 Q5 Avg
Created patches 14.1 12.5 22.4 31.1 20.3 20.0
Built formulas 2.2 1.2 3.3 6.4 2.0 3.0

User
Condifence-SD1.131773 0.585429
Difficulty-SD 0.835899 0.662411

ConfidenceDifficulty
Created patches 2.6 3.8
Built formulas 4.3 1.9

Dev
Condifence-SD1.222566 0.898146
Difficulty-SD 0.909212 0.689928

ConfidenceDifficulty
Created patches 3.8 2.5
Built formulas 4.0 2.1

2.6 4.33.8
1.9

Created patches Built formulas

S
co

re

Confidence Difficulty

3.8 4.0
2.5 2.1

Created patches Built formulas

S
co

re

Confidence Difficulty

(b) Experienced RV developers.
Fig. 11: Confidence and difficulty on a five-point scale.

2) User Study Results: We compare the manual patches
and PPL formulas created by participants using four metrics:
(1) the number of correct answers, (2) average time spent in
each question, (3) the participants’ confidence in their answers,
and (4) the difficulty level participants assign. The participants
create on average 4.6 correct PPL formulas compared to 2
correct manual patches while spending about 12 times less time
on creating formulas. Additionally, the participants have higher
confidence in PPL formulas compared to patches (on average
4.2 vs. 3) and they find generating PPL formulas easier (on
average 1.9 vs. 3.3). We confirm the differences are statistically
significant using the Mann-Whitney U test [51].
Correctness. Two authors of this paper met over multiple
sessions to check the correctness of participants’ answers (man-
ual patches and PPL formulas) and reconcile disagreements.
Through this analysis, we categorize each answer as ‘correct’,
‘incorrect’ or ‘incomplete’ (empty answer).

As shown in Figure 9, the participants correctly created on
average 2 manual patches and 4.6 PPL formulas. We found
that the difference between the two averages is statistically
significant, with p < 0.001. We next analyzed the correctness
of users’ and developers’ answers separately. In Figure 9,
participants from A to L are experienced RV users and
participants from M to R are RV software developers. We
found that RV users correctly created on average 1.25 patches
and 4.6 formulas, while RV developers correctly created on
average 3.5 patches and 4.5 formulas. We found the difference
between the number of correct PPL formulas from users and
developers is not statistically significant (p= 0.66), whereas the
difference between the number of correct patches from users
and developers is (p = 0.008). This shows that participants
can correctly write PPL formulas and create patches through
PGPATCH regardless of their level of RV software experience.

We examined the reasons behind the incomplete and in-
correct answers from participants. We found that none of the
participants provided an incomplete PPL formula, but they
did not give an answer for 44 of the 90 manual patches. We
observed “limited time” and “not familiar with this component”
were the main reasons participants provided in free text for
giving up creating patches. Among the 46 manual patches and

90 PPL formulas participants provided, we found participants
build PPL formulas more accurately compared to creating code-
level patches. Specifically, 19.6% (9/46) of the patches and
8.9% (8/90) of the PPL formulas were incorrect (See Table V).
Upon further analysis, we found the incorrect manual patches
stem from (1) partially fixing a bug, (2) using a wrong unit
(i.e., meter or centimeter), (3) wrong patch location, and
(4) introducing compilation errors. Regarding incorrect PPL
formulas written by participants, they were in almost all cases
(6 out of 8) syntactically incorrect formulas (“wrong verb”,
“wrong term”, and “wrong value”). PGPATCH can detect the
syntactically incorrect formulas (Section V-B) and avoid using
them to generate a patch.
Required Time. We measured the time participants spent
answering each question. We exclude the time the participant
spent on a question if its answer is incomplete. We found
participants spent on average 31.7 minutes on each manual
patch and 2.6 minutes on each PPL formula. We found the
difference between the average time spent on manual patches
and PPL formulas is statistically significant (p < 0.001). As
shown in Figure 10a, the experienced RV users spent on average
36.9 and 2.4 minutes on creating a patch and building a formula,
respectively. As shown in Figure 10b, RV developers spent
on average 20 minutes to create each patch and 3 minutes
to build each formula. We found the differences between the
average time users spent on patches and formulas (p < 0.001)
and the average time developers spent on patches and formulas
(p < 0.001) are both statistically significant. These results show
that building formulas requires less time regardless of the level
of experience in RV software development.
Confidence and Difficulty Scores. We asked the participants
to specify, for each question, their levels of confidence and
the difficulty of the question on a scale from 1 to 5. The
participants gave on average 4.2 confidence level to PPL
formulas and 3 to patches they created. We found this difference
statistically significant (p = 0.019). The participants rated
the difficulty as 1.9 for PPL formulas and 3.3 for patches
on average (p < 0.001). Based on these, we conclude that
participants have a higher confidence in PPL formulas, and
they find generating manual patches more difficult. As shown
in Figure 11a, experienced RV users felt high confidence and
less difficulty when they built formulas compared to creating
patches. Although the RV developers also felt on average
higher confidence and less difficulty in building formulas
(See Figure 11b), the difference between creating patches and
building formulas is smaller compared to the users’ answers.

In summary, our user study shows that, regardless of the
participant’s experience level, creating PPL formulas to fix
bugs using PGPATCH is both easier and less error-prone than
manually fixing the source code of an RV software package.

VIII. RELATED WORK

A. Test suite-based Automatic Program Repair

Search-based APR. A line of search-based APR methods mu-
tates a statement’s operation at a candidate patch location [20].
However, changing an operation (e.g., arithmetic and relational)

13

could not fix any bugs in RV software (See Section III). Other
works use existing code to fix bugs rather than synthesizing a
new code snippet [27], [79], [80]. While reusing code can fix
some of the logic bugs (See Section VII-B), patching logic bugs
requires more complex analysis, e.g., updating a conditional
statement, and inserting a new statement.
Pattern-based APR. To find the patch location and patch the
bug, pattern-based APR methods use common “fix patterns”
learned from patches written by developers and through static
analysis [40], [49]. However, these methods cannot create
a patch if the patch needs to access a variable or function
outside the patch location. PGPATCH addresses this issue by
creating an access pattern mapping table that represents how
to access required variables/functions from the patch location.
Further, these methods fail to create a patch requiring multiple
statements, as they can only fix a single statement. PGPATCH
supports patches with multiple statements by synthesizing a
patch from a PPL formula.
Satisfiability Modulo Theories (SMT) Solver-based APR.
SMT solver-based approaches conduct the following steps
to fix bugs [54], [56]. (1) They extract a repair constraint
based on symbolic execution. (2) They generate potential
patches by enumerating all the possible expressions that can
be constructed starting from a set of program variables and
operators. (3) They query an SMT solver to check whether a
potential patch makes the program pass the given test suite.
However, these approaches fail to create correct patches in RV
software because the correctness of patches depends on the
test suite’s completeness and achieving completeness in RV
software is challenging due to the huge input/output space.

B. Specification-based Automatic Program Repair

APR on Source Code. Recent works leveraged safety specifica-
tions to find patch locations and create code-level patches [34].
For example, they define a memory safety specification for
buffer overflow that states “the program must not make an
out-of-bounds memory access to a buffer” [48]. However, these
methods cannot fix logic bugs in RVs for two main reasons.
(1) Their safety specifications solely express memory-safety
violations. (2) They insert an “if check statement” as a patch to
prevent access to the buffer’s out-of-bounds memory. However,
fixing logic bugs requires more complex code modifications
(See Section III).
APR with Abstract Behavioral Models. A line of work rep-
resents the code in an abstract behavioral model (e.g., discrete
state transition system) and uses temporal logic formulas to
detect and repair software bugs [5], [15], [37]. For instance,
AutoTap [82] takes an LTL formula and fixes a bug in trigger-
action programming (TAP) rules for IoT devices. This approach
has two fundamental limitations preventing it from patching
bugs in RV software. First, it assumes that a device command is
always executed when the IoT system satisfies the preconditions
to trigger it. However, this assumption does not hold in RVs as
logic bugs could make the RV software fail to trigger a behavior
or execute an action. Second, it uses model checking on a finite
Buchi Automaton to validate all possible system executions.

However, RV states are mostly represented as floating point
numbers, which makes extracting behavior models and building
the equivalent Buchi Automaton challenging. Additionally, RV
software operates both in digital and physical spaces; thus,
its behavior can be represented in a hybrid automaton rather
than a discrete transition system. This makes model checking
undecidable due to infinite state space in hybrid systems [31],
[62]. These limitations are also valid for other APR methods
that operate on similar abstract behavioral models.

IX. LIMITATIONS AND DISCUSSION

Correctness of a Given Formula. PGPATCH verifies the
syntax and semantics of the given formulas (Section V-B2). Yet,
it cannot detect an incorrect PPL formula written by developers,
if the formula does not conflict with any other formulas. In such
a case, PGPATCH could produce a faulty patch. One possible
solution to this problem is automated extraction of policies
from the correct function of RVs. Appendix B provides more
details on this topic.
Effort to Port PGPATCH to other RV Software. Porting
PGPATCH to Paparazzi required the following steps: (1) Defin-
ing formulas that describe an RV software’s correct behavior by
reusing existing formulas and, if necessary, updating the terms
on the formulas based on variable/function names provided by
PGPATCH; (2) Verifying and updating the term classification
table; (3) Writing policy violation predicates according to
the new formulas; (4) Designating a control loop function
for generating REUSE type patches; (5) Updating the list of
distance variables for fixing metric unit inconsistency. We
believe that these tasks are not a burden for developers familiar
with RV control programs. For instance, porting PGPATCH
from PX4 to Paparazzi required about 14.5 hours. This includes
above manual tasks and modifying 815 LoC in the “Autotest
suite” (Section V-E2) to adapt to Paparazzi’s differences in the
MAVLink protocol.
Opting out of the Patch Type Analyzer. PGPATCH allows
the patch type analyzer to be optional for creating patches. To
detail, when a user does not select the patch type analyzer
to create a patch, PGPATCH’s Patch Generator first creates a
patch per each patch type that PGPATCH supports, PGPATCH’s
Patch Verifier then validates whether the created patches fix
the bug. It then selects the patch that fixes the bug and deploys
that patch, ignoring the other generated patches.

X. CONCLUSIONS

We introduce PGPATCH, a policy-guided APR framework for
RVs. PGPATCH fixes the logic bugs via customized methods
for five patch types. It addresses the unique challenges in
patching RV software by using PPL formulas to find patch
locations and generate patches. We evaluated PGPATCH on
three popular flight control software. PGPATCH correctly fixed
258 out of 297 logic bugs (86.9%) without interfering with the
RV’s intended functionality and performance. Our user study,
involving 18 experienced RV developers and users, shows that
using PGPATCH to fix bugs in RV software is easier and less
error-prone than manually patching the bugs.

14

ACKNOWLEDGMENT

This work was supported in part by ONR under Grants
N00014-20-1-2128 and N00014-17-1-2045. Any opinions,
findings, and conclusions in this paper are those of the authors
and do not necessarily reflect the views of the ONR. This
work was also supported in part by DARPA under contract
number N6600120C4031. The U.S. Government is authorized
to reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright notation thereon. The views
and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing the
official policies or endorsements, either expressed or implied,
of DARPA or the U.S. Government.

REFERENCES

[1] “Add arming check for windvane,” https://tinyurl.com/2byfhbzd, 2021.
[2] “Add new mode,” https://tinyurl.com/swshv3tc, 2021.
[3] “Add vertical emergency braking,” https://tinyurl.com/2w5h2eds, 2021.
[4] “Add yaw speed filter,” https://tinyurl.com/2rbzczn9, 2021.
[5] D. Alrajeh and R. Craven, “Automated error-detection and repair for

compositional software specifications,” in Proceedings of the Interna-
tional Conference on Software Engineering and Formal Methods (SEFM),
2014.

[6] “Apm sitl,” https://tinyurl.com/wzkamnrp, 2021.
[7] “Ardupilot parameter list xml,” https://tinyurl.com/4bemvrh5, 2021.
[8] “Ardupilot project,” https://github.com/ArduPilot/ardupilot, 2021.
[9] “Ardupilot blog,” https://discuss.ardupilot.org, 2021.

[10] “Ardupilot chat channel,” https://ardupilot.org/discord, 2021.
[11] “Ardupilot-documentation,” https://ardupilot.org/ardupilot/, 2021.
[12] “Autotest,” https://tinyurl.com/6ampumny, 2021.
[13] “Battery fail-safe bug,” https://tinyurl.com/ynf788f4, 2021.
[14] “Betaflight,” https://github.com/betaflight/betaflight, 2021.
[15] C.-H. Cai, J. Sun, and G. Dobbie, “Automatic b-model repair using model

checking and machine learning,” Automated Software Engineering, 2019.
[16] M. Chen, F. Fischer, N. Meng, X. Wang, and J. Grossklags, “How

reliable is the crowdsourced knowledge of security implementation?” in
IEEE/ACM International Conference on Software Engineering (ICSE),
2019.

[17] H. Choi, S. Kate, Y. Aafer, X. Zhang, and D. Xu, “Cyber-physical
inconsistency vulnerability identification for safety checks in robotic
vehicles,” in Proceedings of the ACM SIGSAC Conference on Computer
and Communications Security (CCS), 2020.

[18] “Cleanflight,” https://github.com/cleanflight/cleanflight, 2021.
[19] “Copy code from stack overflow,” https://tinyurl.com/4mf3dhzz, 2021.
[20] V. Debroy and W. E. Wong, “Using mutation to automatically suggest

fixes for faulty programs,” in Proceedings of the International Conference
on Software Testing, Verification and Validation (ICST), 2010.

[21] “Open source drone software projects,” https://dojofordrones.com/
open-source-drone/, 2021.

[22] “List of flight controller firmware projects,” https://blog.dronetrest.com/
flight-controller-firmware/, 2021.

[23] “dronin,” https://github.com/d-ronin/dRonin, 2021.
[24] E. Ebeid, M. Skriver, K. H. Terkildsen, K. Jensen, and U. P. Schultz,

“A survey of open-source uav flight controllers and flight simulators,”
Microprocessors and Microsystems, 2018.

[25] “Ardupilot fence,” https://tinyurl.com/3z2w22d9, 2021.
[26] C. Feng, V. R. Palleti, A. Mathur, and D. Chana, “A systematic framework

to generate invariants for anomaly detection in industrial control systems.”
in Proceedings of the Network & Distributed System Security Symposium
(NDSS), 2019.

[27] S. Forrest, T. Nguyen, W. Weimer, and C. Le Goues, “A genetic
programming approach to automated software repair,” in Proceedings
of the conference on Genetic and evolutionary computation (GECCO),
2009.

[28] “Gps-failsafe,” https://docs.px4.io/master/en/config/safety.html, 2021.
[29] “Hackflight,” https://github.com/simondlevy/Hackflight, 2021.
[30] “Hackflight gcs,” https://github.com/simondlevy/HackflightGCS, 2021.
[31] T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya, “What’s decidable

about hybrid automata?” Journal of computer and system sciences, 1998.

[32] H. Huang, S. Z. Guyer, and J. H. Rife, “Detecting semantic bugs
in autopilot software by classifying anomalous variables,” Journal of
Aerospace Information Systems, 2020.

[33] Z. Huang, M. DAngelo, D. Miyani, and D. Lie, “Talos: Neutralizing vul-
nerabilities with security workarounds for rapid response,” in Proceedings
of the IEEE Symposium on Security and Privacy (S&P), 2016.

[34] Z. Huang, D. Lie, G. Tan, and T. Jaeger, “Using safety properties to
generate vulnerability patches,” in Proceedings of the IEEE Symposium
on Security and Privacy (S&P), 2019.

[35] “Inav,” https://github.com/iNavFlight/inav, 2021.
[36] “jmavsim,” https://github.com/PX4/jMAVSim, 2021.
[37] B. Jobstmann, A. Griesmayer, and R. Bloem, “Program repair as a

game,” in Proceedings of the International conference on computer
aided verification (CAV), 2005.

[38] B. Jobstmann, S. Staber, A. Griesmayer, and R. Bloem, “Finding and
fixing faults,” Journal of Computer and System Sciences, 2012.

[39] J. A. Jones, M. J. Harrold, and J. Stasko, “Visualization of test information
to assist fault localization,” in Proceedings of the IEEE/ACM International
Conference on Software Engineering (ICSE), 2002.

[40] D. Kim, J. Nam, J. Song, and S. Kim, “Automatic patch generation
learned from human-written patches,” in Proceedings of the IEEE/ACM
International Conference on Software Engineering (ICSE), 2013.

[41] H. Kim, M. O. Ozmen, A. Bianchi, Z. B. Celik, and D. Xu, “PGFUZZ:
Policy-guided fuzzing for robotic vehicles,” in Proceedings of the Network
& Distributed System Security Symposium (NDSS), 2021.

[42] T. Kim, C. H. Kim, A. Ozen, F. Fei, Z. Tu, X. Zhang, X. Deng, D. J.
Tian, and D. Xu, “From control model to program: Investigating robotic
aerial vehicle accidents with MAYDAY,” in Proceedings of the USENIX
Security Symposium (USENIX SEC), 2020.

[43] T. Kim, C. H. Kim, J. Rhee, F. Fei, Z. Tu, G. Walkup, X. Zhang,
X. Deng, and D. Xu, “RVFUZZER: finding input validation bugs in
robotic vehicles through control-guided testing,” in Proceedings of the
USENIX Security Symposium (USENIX SEC), 2019.

[44] Y.-M. Kwon, J. Yu, B.-M. Cho, Y. Eun, and K.-J. Park, “Empirical
analysis of mavlink protocol vulnerability for attacking unmanned aerial
vehicles,” IEEE Access, 2018.

[45] X. B. D. Le, F. Thung, D. Lo, and C. Le Goues, “Overfitting in semantics-
based automated program repair,” Empirical Software Engineering, 2018.

[46] B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan, “Bug isolation via
remote program sampling,” ACM Sigplan Notices, 2003.

[47] “Librepilot,” https://github.com/librepilot/LibrePilot, 2021.
[48] Z. Lin, X. Jiang, D. Xu, B. Mao, and L. Xie, “Autopag: towards automated

software patch generation with source code root cause identification and
repair,” in Proceedings of the ACM symposium on Information, computer
and communications security (ASIACCS), 2007.

[49] K. Liu, A. Koyuncu, D. Kim, and T. F. Bissyandé, “Avatar: Fixing seman-
tic bugs with fix patterns of static analysis violations,” in Proceedings
of the IEEE International Conference on Software Analysis, Evolution
and Reengineering (SANER), 2019.

[50] “Llvm,” https://releases.llvm.org/10.0.0/docs/, 2021.
[51] H. B. Mann and D. R. Whitney, “On a test of whether one of two

random variables is stochastically larger than the other,” The annals of
mathematical statistics, 1947.

[52] M. Martinez, T. Durieux, R. Sommerard, J. Xuan, and M. Monperrus,
“Automatic repair of real bugs in java: A large-scale experiment on the
defects4j dataset,” Empirical Software Engineering, 2017.

[53] “Mavlink,” https://mavlink.io/en, 2021.
[54] S. Mechtaev, J. Yi, and A. Roychoudhury, “Angelix: Scalable multiline

program patch synthesis via symbolic analysis,” in Proceedings of the
IEEE/ACM International Conference on Software Engineering (ICSE),
2016.

[55] “multiwii,” https://github.com/multiwii/multiwii-firmware, 2021.
[56] H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra, “Semfix:

Program repair via semantic analysis,” in Proceedings of the IEEE/ACM
International Conference on Software Engineering (ICSE), 2013.

[57] “Nps,” https://wiki.paparazziuav.org/wiki/NPS, 2021.
[58] “Paparazzi parameter list xml,” https://tinyurl.com/np2e6v2r, 2021.
[59] “Paparazzi uas,” https://github.com/paparazzi/paparazzi/, 2021.
[60] “Paparazzi chat channel,” https://gitter.im/paparazzi/discuss, 2021.
[61] J. H. Perkins, S. Kim, S. Larsen, S. Amarasinghe, J. Bachrach, M. Carbin,

C. Pacheco, F. Sherwood, S. Sidiroglou, G. Sullivan et al., “Automatically
patching errors in deployed software,” in Proceedings of the ACM
Symposium on Operating Systems Principles (SOSP), 2009.

15

https://tinyurl.com/2byfhbzd
https://tinyurl.com/swshv3tc
https://tinyurl.com/2w5h2eds
https://tinyurl.com/2rbzczn9
https://tinyurl.com/wzkamnrp
https://tinyurl.com/4bemvrh5
https://github.com/ArduPilot/ardupilot
https://discuss.ardupilot.org
https://ardupilot.org/discord
https://ardupilot.org/ardupilot/
https://tinyurl.com/6ampumny
https://tinyurl.com/ynf788f4
https://github.com/betaflight/betaflight
https://github.com/cleanflight/cleanflight
https://tinyurl.com/4mf3dhzz
https://dojofordrones.com/open-source-drone/
https://dojofordrones.com/open-source-drone/
https://blog.dronetrest.com/flight-controller-firmware/
https://blog.dronetrest.com/flight-controller-firmware/
https://github.com/d-ronin/dRonin
https://tinyurl.com/3z2w22d9
https://docs.px4.io/master/en/config/safety.html
https://github.com/simondlevy/Hackflight
https://github.com/simondlevy/HackflightGCS
https://github.com/iNavFlight/inav
https://github.com/PX4/jMAVSim
https://github.com/librepilot/LibrePilot
https://releases.llvm.org/10.0.0/docs/
https://mavlink.io/en
https://github.com/multiwii/multiwii-firmware
https://wiki.paparazziuav.org/wiki/NPS
https://tinyurl.com/np2e6v2r
https://github.com/paparazzi/paparazzi/
https://gitter.im/paparazzi/discuss

[62] E. Plaku, L. E. Kavraki, and M. Y. Vardi, “Falsification of ltl safety
properties in hybrid systems,” in Proceedings of the International
Conference on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS), 2009.

[63] “Pprzlink,” https://github.com/paparazzi/pprzlink, 2021.
[64] “Px4 drone autopilot,” https://github.com/PX4/PX4-Autopilot, 2021.
[65] “Px4 parameter list xml,” https://tinyurl.com/5fhcuydx, 2021.
[66] “Px4 blog,” https://discuss.px4.io, 2021.
[67] “Px4 chat channel,” https://gitter.im/PX4/Firmware, 2021.
[68] “Px4-documentation,” https://docs.px4.io/master/en/, 2021.
[69] “Pymavlink,” https://github.com/ArduPilot/pymavlink, 2021.
[70] “Pyparsing,” https://github.com/pyparsing/pyparsing, 2021.
[71] Z. Qi, F. Long, S. Achour, and M. Rinard, “An analysis of patch

plausibility and correctness for generate-and-validate patch generation
systems,” in Proceedings of the International Symposium on Software
Testing and Analysis (ISSTA), 2015.

[72] C. Ragkhitwetsagul, J. Krinke, M. Paixao, G. Bianco, and R. Oliveto,
“Toxic code snippets on stack overflow,” IEEE Transactions on Software
Engineering (TSE), 2019.

[73] N. M. Rodday, R. d. O. Schmidt, and A. Pras, “Exploring security
vulnerabilities of unmanned aerial vehicles,” in Proceedings of the
IEEE/IFIP Network Operations and Management Symposium (NOMS),
2016.

[74] S. Schechter, “Common pitfalls in writing about security and privacy
human subjects experiments, and how to avoid them,” Microsoft, 2013.

[75] M. Shahzad, M. Z. Shafiq, and A. X. Liu, “A large scale exploratory
analysis of software vulnerability life cycles,” in Proceedings of the
IEEE/ACM International Conference on Software Engineering (ICSE),
2012.

[76] “Tau labs,” https://github.com/TauLabs/TauLabs, 2021.
[77] “Tilt-bug,” https://tinyurl.com/6yj5bx4v, 2021.
[78] “Update math functions,” https://tinyurl.com/eaez8sjn, 2021.
[79] W. Weimer, S. Forrest, C. Le Goues, and T. Nguyen, “Automatic program

repair with evolutionary computation,” Communications of the ACM,
2010.

[80] W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest, “Automatically
finding patches using genetic programming,” in Proceedings of the
IEEE/ACM International Conference on Software Engineering (ICSE),
2009.

[81] K. C. Zeng, S. Liu, Y. Shu, D. Wang, H. Li, Y. Dou, G. Wang, and
Y. Yang, “All your gps are belong to us: Towards stealthy manipulation
of road navigation systems,” in Proceedings of the USENIX Security
Symposium (USENIX SEC), 2018.

[82] L. Zhang, W. He, J. Martinez, N. Brackenbury, S. Lu, and B. Ur, “Autotap:
synthesizing and repairing trigger-action programs using ltl properties,”
in Proceedings of the IEEE/ACM International Conference on Software
Engineering (ICSE), 2019.

[83] L. Zhang, W. He, O. Morkved, V. Zhao, M. L. Littman, S. Lu, and
B. Ur, “Trace2tap: Synthesizing trigger-action programs from traces of
behavior,” The ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies, 2020.

APPENDIX

A. Analysis of Bug Types

We collected 1,554 patches (called Pset) from 2014 to 2021
on their GitHub repositories [8], [64]. Two authors of this paper
reviewed and classified each patch into one of three types: (1)
fixing a logic bug, (2) patching a memory bug, and (3) minor
issues. Here, the minor issues cannot negatively change an
RV’s behavior, e.g., updating comments and code refactoring.
We concluded that Pset fixed 1,234 logic bugs, 23 memory
bugs, and 297 minor issues. We excluded the 297 minor issues
from Pset because they are not fixing bugs. Then, we noticed
that 98.2% (1,234/1,257) and 1.8% (23/1,257) of bugs are
logic and memory bugs, respectively.

B. Automatically Extracting Policies

Previous works have profiled the normal behaviors of (1)
programs from values of memory locations [61], and (2) IoT

RV changes

a constant state

If Mode is LAND,

then Tiltt is Tiltt-1

DISABLE

Yes

Parameter has an

abnormal value

No

CHECK

Yes

POST is triggered

regardless of PRE

- COM_POS_FS_DELAY = -1

- Valid range: 1 - 100

No

UPDATE

Yes

POST is not

triggered

No

POST is not triggered

after a flight stage

Other

Patch types

Yes

No

No

Yes
REUSE ADD

Formula: If statei is true, then actionj is on

Bug: {(statei = false), (actionj = on)}

Violated formula and RV’s states



 



Fig. 12: Flow diagram of PGPATCH’ patch type analyzer. POST
and PRE denote post-conditions and preconditions of a PPL
formula, respectively.

Algorithm 1 Patch Type Analyzer for ADD and REUSE

Input: A set of default mission plans Missionset, a size of Missionset α,
a set of inputs to trigger a logic bug Inputbug, a size of Missionset and
Inputbug β, a simulator SIM, PPL formulas φ

Output: A patch type P
1: function INFER_TYPE(Missionset, α) ▷ Main
2: for i< α; i++ do ▷ Mutate a test case Testset
3: for j< α; j++ do
4: if i = j then
5: Testset(j)← inputbug ▷ j-th input will be Inputbug
6: end if
7: Testset(j)← Missionset(j) ▷ Assign a next flight state
8: end for
9: C← CHECK_POLICY(Testset, β) ▷ Get bug context (C)

10: end for
11: P← PATCH_TYPE(C) ▷ Pick a patch type based on C
12: return P
13: end function
14: function CHECK_POLICY(Testset, β)
15: while V= /0 or k< β do
16: input← Testset(k) ▷ Get an input
17: S ← SIM.execute(input) ▷ Collect RV’s states (S) from SIM
18: V← POLICY_CHECK(φ, S) ▷ Check policy violations
19: k= k+1
20: if V ̸= /0 then
21: return ⟨V,S,k⟩
22: end if
23: end while
24: end function

systems and industrial control systems from actuator and sensor
traces [26], [83]. One may consider using these methods for
profiling the correct behavior of RVs to generate PPL formulas
for PGPATCH. Yet, since RVs operate in dynamic outdoor
environments, an RV’s correct behavior is influenced by many
different factors (including user commands and environmental
conditions, such as wind, other vehicles, and obstacles). For
this reason, profiling complete normal behaviors from the huge
input space of RVs is not scalable because it requires testing
each user input combination under all possible environmental
conditions.

16

https://github.com/paparazzi/pprzlink
https://github.com/PX4/PX4-Autopilot
https://tinyurl.com/5fhcuydx
https://discuss.px4.io
https://gitter.im/PX4/Firmware
https://docs.px4.io/master/en/
https://github.com/ArduPilot/pymavlink
https://github.com/pyparsing/pyparsing
https://github.com/TauLabs/TauLabs
https://tinyurl.com/6yj5bx4v
https://tinyurl.com/eaez8sjn

RV
software

Bug
type

of
fixed bugs

Root cause Physical effect
Removed

feature Misimplementation Unimplementation
Incorrect valid

range check
Crash

on the ground
Unstable

attitude/position
Performance
degradation

Incorrect
state

ArduPilot Logic 20 0 4 0 16 7 9 0 4
Memory 120 0 0 0 120 120 0 0 0

PX4 Logic 24 0 3 0 21 0 23 0 1
Memory 0 0 0 0 0 0 0 0 0

Paparazzi Logic 17 0 0 0 17 0 17 0 0
Memory 0 0 0 0 0 0 0 0 0

Total 181 0 7 0 174 127 49 0 5

TABLE VI: Summary of the fixed 181 bugs that were discovered by PGFuzz.

RV
software

Bug
type

of
fixed bugs

Root cause Physical effect
Removed

feature Misimplementation Unimplementation
Incorrect valid

range check
Crash

on the ground
Unstable

attitude/position
Performance
degradation

Incorrect
state

ArduPilot Logic 31 2 16 13 0 2 12 5 12
Memory 1 0 1 0 0 1 0 0 0

PX4 Logic 24 0 20 0 4 1 14 0 9
Memory 0 0 0 0 0 0 0 0 0

Paparazzi Logic 19 2 15 0 2 5 9 2 3
Memory 2 0 1 0 1 2 0 0 0

Total 77 4 53 13 7 11 35 7 24

TABLE VII: Summary of the fixed 77 bugs that are reported in GitHub repositories.

C. Details of the Fixed Bugs

In our evaluation (Section VII), PGPATCH succeeded in
patching a total of 258 out of 297 logic bugs. We present the
bug types, their root cause, and physical effects in Table VI
and Table VII.

Root Causes of Bugs. We group the root causes of the
258 patched bugs into four different categories: (1) “Removed
feature” means that an RV control program still can trigger a
deprecated behavior, although the documentation explicitly
mentions the behavior is prohibited. For instance, AUTO_-
DISARMING_DELAY configuration parameter is deprecated based
on the ArduPilot documentation; however, the RV software
includes a code snippet for the parameter. This allows attackers
to exploit this parameter to disarm an RV’s motors (See
in Section II). (2) The “Misimplementation” bugs occur when
developers incorrectly implement features. For example, in
Listing 4, we show a bug that contains an incorrect condition
statement, which leads to an improper flight mode change. (3)
The “Unimplemented” bugs refer to unimplemented features
in the RV software, although the documentation explicitly
mentions that the RV software supports the features. For
instance, developers forgot to check the validity of a wind
vane before the takeoff flight stage (Listing 3), which makes
the RV fail to navigate into a waypoint. (4) The “Incorrect valid
range check” means that the RV software does not check valid
values of the configuration parameters or incorrectly enforces
them. For example, in Listing 2, we show that PX4 does not
check the valid range of the parameter, which prevents the RV
from triggering the GPS fail-safe, and causing it to randomly
fly in the air (Detailed in Section III-A).

As shown in Table VI, the root causes of bugs reported by
the fuzzing tools [41], [43] are mainly due to the “Incorrect
valid range check” (96.1%). This is because the RVs include
many configuration parameters, and not properly checking their
valid ranges results in logic bugs. As shown in Table VII, 66
out of the 77 bugs (85.7%), which are obtained from GitHub
commit history, are due to root causes of “Misimplementation”
and “Unimplemented”.

Physical Effect of Bugs. We additionally categorize the
effects of bugs into four different types: (1) The “Crash on the
ground” means that the (simulated) RV loses attitude control
and crashes on the ground. (2) The “Unstable attitude/position”
refers to instability in either its attitude or position control. (3)
The “Performance degradation” represents degraded processing
time or wasted memory space. (4) The “Incorrect state” means
all other unexpected behaviors, including incorrectly triggered
flight mode, failing to detect landing on the ground, and missed
warning messages on a ground control station.

We show in Table VI that 176 out of the 181 bugs (97.2%)
from PGFuzz directly lead to physical harm (i.e., either crashing
or instability), and 5 out of the 181 bugs (2.8%) cause incorrect
states. As shown in Table VII, 46 out of the 77 bugs (59.7%)
from Github repositories directly cause physical harm. 31
out of the 77 bugs (40.3%) (i) degrade flight performance
due to increased processing time, wasted memory space, and
incorrectly measured states (e.g., incorrect land detection) or
(ii) lead to incorrect states.

D. Generality of PGPATCH

We randomly select private member variables and check
whether the RV software follows the naming conventions. We
consider a specific RV software package as complying with
the naming conventions if we could find getters and setters for
the selected private variables.

The results of our analysis are shown in Table IV. PGPATCH
could be ported to the following eight RV control programs
with minor engineering effort: Paparazzi [59], PX4 [64],
ArduPilot [8], Betaflight [14], Cleanflight [18], LibrePilot [47],
Tau Labs [76], and dRonin [23]. We call these eight RV
control programs portable RV software packages. On the
contrary, PGPATCH cannot be easily applied to INAV [35] and
multiwii [55] because they are not supported by any simulators.
Further, we cannot deploy PGPATCH to Hackflight [29] because
its telemetry protocol [30] is mainly for viewers instead of
operating RVs. Particularly, Hackflight’s protocol only allows
PGPATCH to change roll, pitch, yaw, and throttle states of

17

ID
Vehicle

type
Formula

ID
Violated
formula Description

Patch
type Fixable?

Bug1
Mentor
Energy

PP.FailSafe
If GPSloss is true and RCvalid is false, then mode

is FAILSAFE

FAILSAFE mode is not triggered when the
vehicle loses GPS and RC signals.

ADD

✓

Bug2 Minion_Lia ✓

Bug3 Quad_Lisa_2
FAILSAFE mode is not triggered when the
vehicle’s mode is HoverC. ✓

Bug4 Quad_LisaMX
FAILSAFE mode is not triggered when the
vehicle’s mode is NAV. ✓

Bug5 Bebop2

PP.Hover
If Modet is Hover, then Post is Post−1 and Yawt is
Yawt

The vehicle fails to stay at a constant position
after conducting FLIP mode.

Other

✗

Bug6 Bebop2 The vehicle fails to trigger Hover mode. ✗
Bug7 Ardron2 ✗

Bug8 Ardron2
The vehicle crashes on the ground after
conducting FLIP mode. ✗

Bug9 Quad_Elie0
PP.TAKEOFF1

If Commandt is takeoff, then ALTtarget is greater
than or equal to HOME_ALT+5

The vehicle fails to take off from the ground. ✗
Bug10 Quad-Navstik ✗

Bug11 LadyLisa PP.HoverZ
If Modet is HoverZ and Throttlet is 1500, then
ALTt is ALTt−1

When the vehicle’s flight mode is HoverZ, it
fails to maintain a constant altitude. DISABLE ✓

Bug12 Bebop2 PP.HOME1
If Modet is HOME and Landt is not true, then ALTt
is not ALTt−1 and Post is not Post−1

When nav_desend_v configuration param-
eter is 0, the vehicle fails to land on the
ground.

CHECK ✓

TABLE VIII: Summary of new logic bugs discovered by PGFuzz on Paparazzi.

RVs through a remote controller channel. Yet, to trigger buggy
behaviors, PGPATCH needs to fully manipulate inputs.

E. The Formulas’ Usability
We evaluate PGPATCH on Paparazzi to find new logic bugs.

To run PGFuzz on Paparazzi, we reused the five formulas used
in PGFuzz for Paparazzi, and added a new formula to detect
possible logic bugs. The new formula is for a fail-safe mode
in Paparazzi: “If GPSloss is true and RCvalid is false, then
mode is FAILSAFE”. The reason is that PGFuzz defines the
fail-safe behavior of ArduPilot and PX4 in the form of LTL
formulas but does not create a formula for Paparazzi’s fail-safe
mode.

We discovered a total of 12 previously unknown logic
bugs by running PGFuzz on Paparazzi for a day (as shown
in Table VIII). To detail, the PP.FailSafe, PP.Hover, and
PP.TAKEOFF1 formulas discovered multiple logic bugs (10 out
of the 12 bugs). The PP.HoverZ and PP.HOME1 each detected
one bug (2 out of the 12 bugs). We have reported the discovered,
previously unknown 12 logic bugs to Paparazzi developers,
who acknowledged them.

By using the same formulas, PGPATCH fixed 6 out of the 12
logic bugs. Specifically, PGPATCH fixed 4 bugs of ADD type,
1 of DISABLE type, and 1 of CHECK type. PGPATCH failed
to fix the other 6 logic bugs. The reason is that developers
do not implement (i) Hover flight mode (Bug5-Bug8), and
(ii) Quad_Elie0 and Quad-Navstik vehicle types (Bug9 and
Bug10) although the documentation explicitly mentions that
Paparazzi supports these features. These require PGPATCH to
create the features from scratch.

F. Recruitment Details and Participant Demographics
We recruit from two different groups, RV developers and

experienced RV users. The RV developers actively fix bugs
reported in their GitHub repositories [8], [59], [64], community
websites [9], [66], and live chat channels [10], [60], [67].
To recruit developers, we advertised our study in developer
community websites and live chat channels. Experienced RV

(a) Age
Min = 19 Mean = 27.1 Median = 24.5 Stddev = 6 Max = 40

(b) Country of origin
China = 7 S. Korea = 2 USA = 2 Pakistan = 1

(c) Achieved level of education
Highschool = 2 Bachelor = 6 Graduate school = 4

(d) Do you know LTL syntax?
Yes = 2 No = 10

(e) Which RV software have you modified?
ArduPilot = 5 PX4 = 4 ArduPilot & PX4 = 3

(f) How many years of RV software experience do you have?
Less than 1 year = 6 1 year = 3 2 years = 0 More than 3 years = 3

(g) What is your major?
Computer
science = 9

Electrical
Engineering = 2

Aerospace
Engineering = 1

(h) Do you primarily study/work in RVs?
Yes = 4 No = 8
(i) What level of RV software programming proficiency do you think you have?
Beginner = 7 Intermediate = 4 Advanced = 1

TABLE IX: Detailed data about demographics of experienced
RV users (N = 12).

(a) Age
Min = 22 Mean = 38.8 Median = 29.5 Stddev = 9.1 Max = 44

(b) Country of origin
Brazil = 2 France = 1 Puerto Rico = 1 Turkey = 1 USA = 1

(c) Achieved level of education
Highschool = 1 Bachelor = 2 Graduate school = 3

(d) Do you know LTL syntax?
Yes = 0 No = 6

(e) Which RV software have you modified?
ArduPilot = 6 PX4 = 0 ArduPilot & PX4 = 0

(f) How many years of RV software experience do you have?
Less than 1 year = 0 1 year = 2 2 years = 1 More than 3 years = 3

(g) What is your major?
Computer
science = 2

Mechanical
Engineering = 2

Aerospace
Engineering = 1 N/A = 1

(h) Do you primarily study/work in RVs?
Yes = 6 No = 0

(i) What level of RV software programming proficiency do you think you have?
Beginner = 1 Intermediate = 3 Advanced = 2

TABLE X: Detailed data about demographics of experienced
RV developers (N = 6).

users also create patches, which are then reviewed and approved
by developers before they are applied to the RV software. To
recruit experienced RV users, we advertised our study through
internal campus email listings and Slack channels to reach out
to engineering and CS students familiar with RV software.

18

ID Formula Description
of

fixed bugs

PP.FailSafe If GPSloss is true and RCvalid is false, then mode
is FAILSAFE

FAILSAFE mode is triggered when the vehicle loses
GPS and RC signals.

4

PP.HoverZ If Modet is HoverZ and Throttlet is 1500, then ALTt
is ALTt−1

The vehicle must maintain a constant altitude if its
flight mode is HoverZ and the current throttle is 1500.

2

RV.Safety
(generic formula)

If Parami_value is less than Mini or Parami_value is
more than Maxi, then Safety is error

The vehicle returns a safety error if i-th configuration
parameter has a value outside its valid range.

44

RV.Check
(generic formula)

If Parami_value is less than Mini or Parami_value is
more than Maxi, then Parami_value is Parami_default

When i-th configuration parameter have a value outside
its valid range, then a patch assigns a default value to
the parameter.

135

TABLE XI: Four PPL formulas fixing multiple bugs.

Our user study was approved by our institution’s IRB [74],
and considered exempt. We asked participants to fill out
a consent form and answer demographic questions before
conducting the user study. We compensated all participants
with a $40 Amazon gift card.

22 participants (6 developers and 16 users) applied for our
study, and 18 (6 developers and 12 users) qualified based on
their experience in finding bugs in RVs and modifying RV
software. We present the demographic data of the participants
in Table IX and Table X. To the best of our knowledge, this is
the first APR work that recruits experienced developers in the
RV industry and compares their performance to the APR tool’s
one. Mainly, 1 of the 6 RV developers is an official maintainer
of ArduPilot. He regularly contributes to the RV software and
is responsible for reviewing patches on ArduPilot. He has more
than 800 commit records dating back to the initial phases of
ArduPilot. The other five developers have at least one year of
experience in the RV industry.

G. Relationship between Formulas and Bugs

We used a total of 123 formulas to attempt to fix the 297 bugs
in Section VII-A. 4 out of the 123 formulas (PP.FailSafe,
PP.HoverZ, RV.Check, RV.Safety) fixed multiple bugs, as
shown in Table XI. The other 119 formulas could fix one
bug each. We note that building formulas is still worthwhile
even when one formula can fix only one logic bug. The reason
is that creating formulas is much faster and less error-prone
than manually patching bugs, as explained in Section VII-G.

Regarding the formulas patching multiple bugs, the
PP.FailSafe formula ensures that the fail-safe mode is
triggered when the RV loses GPS and RC signals. This formula
patches four bugs. In this case, multiple patches are placed in
separate locations in the code, depending on the RV’s flight
mode (e.g., AUTO or MANUAL) that triggers the bug.

The PP.HoverZ formula ensures that the RV maintains a
constant altitude during the Hover_Z flight mode. This formula
fixes two bugs. In this case, two identical patch code snippets
are required in different functions according to vehicle types
(multi-copter and fixed-wing).

Finally, RV.Safety and RV.Check are generic formulas,
which means that some of their terms assume multiple values
from a list. For instance, the RV.Safety formula uses different
Parami and corresponding Mini/Maxi values, from a list of pa-
rameters and corresponding minimum/maximum values. Users
can obtain a valid range for each of the configuration parameters

from the official documentation [7], [58], [65]. An example
of an entry of this list is: < ANGLE_MAX ,1000,8000 >. In
this example, the RV.Safety formula will be instantiated to
“If (ANGLE_MAX is less than 1000) or (ANGLE_MAX is more than
8000), then (Safety is error)”.

In general, patches generated from the RV.Safety formula
verify whether parameters related to altitude/attitude of the RV
have a valid value. Using this formula, PGPATCH inserts a
patch verifying whether altitude/attitude-related parameters are
within proper ranges. In case they are not, the patch sends a
“Safety error” message to the GCS. Concretely, these patches
address a bug causing the RV software not to send error
messages to the GCS when in certain flight stages (e.g., after
takeoff).

Similarly, patches generated using the RV.Check formula
check if a non-altitude/attitude-related parameter is within
a valid range. In the case of violations, the inserted patches
assign the violating parameter to a default value. The difference
between these two behaviors is justified by the fact that the
RV software is designed to deal with invalid altitude/attitude-
related parameters (although, in this case, it is supposed to
send a message to the GCS), while it assumes that all other
parameter values are always in valid ranges.

19

	Introduction
	Preliminaries
	Examples of Logic Bugs
	GPS Fail-Safe Bug
	Sailboat Pre-Arming Bug
	Battery Fail-Safe Bug
	Tilt Angle Bug
	Exploiting Logic Bugs

	Logic Bug Analysis
	PGPatch
	System Overview
	Preprocessor
	Checking Syntax Errors in PPL Formulas
	Checking Semantic Errors in PPL Formulas
	Checking Validity of Terms

	Patch Type Analyzer
	Mapping Terms to Source Code
	Identifying a Patch Type

	Patch Generator
	Creating an Access Pattern Mapping Table
	Adding a Condition Check (ADD)
	Reusing an Existing Code Snippet (REUSE)
	Checking Valid Ranges of Parameters (CHECK)
	Updating a Statement (UPDATE)
	Disabling a Statement (DISABLE)

	Patch Verifier
	Patch Correction
	Testing the Completeness of Patches

	Implementation
	Evaluation
	Experiment Setup
	Quantitative Evaluation
	Qualitative Evaluation
	Root Cause and Physical Effect of Bugs
	Generality of PGPatch
	Discovering and Fixing New Logic Bugs
	User Study
	Tasks
	User Study Results

	Related work
	Test suite-based Automatic Program Repair
	Specification-based Automatic Program Repair

	Limitations and discussion
	Conclusions
	References
	Appendix
	Analysis of Bug Types
	Automatically Extracting Policies
	Details of the Fixed Bugs
	Generality of PGPatch
	The Formulas' Usability
	Recruitment Details and Participant Demographics
	Relationship between Formulas and Bugs

