
iStelan: Disclosing Sensitive User Information by Mobile

Magnetometer from Finger Touches

Reham Mohamed, Habiba Farrukh, Yidong Lu, He Wang, and Z. Berkay Celik
{raburas,hfarrukh,lu805,hw,zcelik}@purdue.edu

Purdue University

ABSTRACT

We show a new type of side-channel leakage in which the built-in
magnetometer sensor in Apple’s mobile devices captures the touch
events of users. When a conductive material such as the human
body touches the mobile device screen, the electric current passes
through the screen capacitors generating an electromagnetic field
around the touch point. This electromagnetic field leads to a sharp
fluctuation in the magnetometer signals when a touch occurs, both
when the mobile device is stationary and held in hand naturally.
These signals can be accessed by mobile applications running in the
backgroundwithout requiring any permissions.We develop iStelan,
a three-stage attack, which exploits this side-channel to infer users’
applications and touch data. iStelan translates the magnetometer
signals to a binary sequence to reveal users’ touch events, exploits
touch event patterns to fingerprint the type of application a user is
using, and models touch events to identify users’ touch event types
performed on different applications. We demonstrate the iStelan
attack on 22 users while using 7 popular app types and show that
it achieves an average accuracy of 90% for disclosing touch events,
74% for classifying application type used, and 73% for detecting
touch event types.

KEYWORDS

Side-channel attacks, user privacy, information leakage

1 INTRODUCTION

High-resolution sensors present in modern-day mobile and IoT de-
vices have enabled diverse apps–from social networking to banking
and healthcare–to be more autonomous, adaptive, and efficient.
However, the data from mobile sensors enable adversaries to gain
unauthorized access to sensitive user information, such as their
habits, behaviors, and preferences [1], as well as physical attacks,
such as [9, 39]. To prevent surreptitious access to mobile sensors,
mobile operating systems such as Android and iOS have introduced
sensitive and normal permission types according to the sensitivity
of sensors accessed by an app [54]. These permissions require ac-
cess requests granted by users to acquire privacy-sensitive sensors
(e.g., cameras and GPS). The accelerometer, gyroscope, and magne-
tometer sensors, however, are generally not regulated by user-level
and system-level access controls due to usability concerns and their
impact on the app functionality, making them a prime target for
information stealing attacks.

This work is licensed under the Creative Commons Attribu-
tion 4.0 International License. To view a copy of this license
visit https://creativecommons.org/licenses/by/4.0/ or send a
letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
Proceedings on Privacy Enhancing Technologies 2023(2), 79–96
© 2023 Copyright held by the owner/author(s).
https://doi.org/10.56553/popets-2023-0042

Previous efforts have explored side-channel privacy risks through
sound [36] and light [53] to infer the touch events of users on smart-
phone screens. Sound signals were also used to infer the target
user’s handwriting [63]. These attacks, however, require explicit
user permission that invalidates the adversary’s prior knowledge
about the system and require an attacker to obtain the signals
by external measurement equipment within physical proximity
during the attack. To address these problems, recent works have
shown that the accelerometer and gyroscope on smartphones can
be used to infer private information such as a user’s touch behav-
ior [29, 34, 35, 38, 62]. However, these attacks depend on significant
movement in the phone body while the user touches the screen
and are contaminated with the environmental factors that cause
changes in motion. Consequently, they require users to hold the
phone in their hands and type with specific fingers. Thus, they
are ineffective when the phone is stationary or encounters a small
motion, for instance, when the phone is placed on a table or a user
holds the phone temporarily stationary.

In this paper, we present a new side-channel leakage in iOS de-
vices, including iPhones and iPads, which can be used to infer users’
touch data from the onboard magnetometer. We observe that hu-
man touch on the device screen generates an electromagnetic field
around the point of touch. This electromagnetic impact is generated
from capacitive touchscreens that consist of conductive transparent
layers below their glass sheet. Particularly, a capacitance change
occurs in the electrodes of the conductive layer when the human
finger touches the screen due to the conductive nature of the human
body [49]. This change leads to a displacement current producing
an electromagnetic field. Due to the magnetometer’s high resolu-
tion and close placement relative to the screen, a noticeable impact
is created on the magnetometer signal.

We tested our observation on ten mobile devices from different
smartphone vendors. We found that this electromagnetic impact of
user’s touch is prominent on Apple’s iPhone and iPad (Section 2),
which hold 20.8% and 64.6% of the smartphones and tablets market
share, respectively [55]. The side-channel information leaked by
the magnetometer eliminates the limitations of previous work us-
ing accelerometer and gyroscope, which require a broad range of
motion in the phone to detect touch events.

We introduce iStelan, which takes a new approach to analyzing
leaked magnetometer signals to infer users’ touch and application
information. iStelan stealthily collects magnetometer data from
the victim’s phone in the background without access to other sen-
sitive information. The collected data is then used in three attack
stages. First, we introduce a binary touch extractor extending a
Deep Neural Network (DNN) classifier with a sequence-to-sequence
mapping to uncover binary touch events from 3D magnetometer
signals, which are only accessible to foreground apps in practice.

79

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56553/popets-2023-0042

Proceedings on Privacy Enhancing Technologies 2023(2) Mohamed et al.

From this, we build an app classifier to identify the type of app a
user is using from fingerprints of different apps learned through a
Long Short-term Memory Network (LSTM). Lastly, the touch event
type detector integrates the binary touch sequence of each app type
into a Hidden Markov Model (HMM) to label users’ touch event
sequence with touch actions, such as swiping and typing.

Unlike previous works, we do not directly infer touch locations.
However, the private user data inferred by iStelan, including app
fingerprinting and touch events information enables an adversary
to perform UI state hijacking attacks (e.g., confusion attacks [3]),
where an adversary shows an interface that mimics the app the
user is using. This allows an adversary to steal users’ passwords
or personal data and access sensitive information, such as cam-
era images [11]. Additionally, starting with iOS 14.5, Apple’s App
Tracking Transparency (ATT) framework requires apps to explicitly
request user permission to track users’ activity across various apps
and to access their advertising IDs. An adversary using iStelan
attack could evade this requirement by stealthily inferring users’
most popular apps in the background. This allows the adversary
to display targeted advertisements without gaining explicit app
tracking permission. Furthermore, a malicious app using iStelan
attack could act as a data broker to sell users’ data to interested
third parties. For example, knowing that a user is using a travel app,
ticket booking platforms could use this data to adjust their prices.
Similarly, a user using a health app could be the target of medical
insurance companies to provide her with tailored offers.

We evaluate iStelan attack by collecting a data set from 22 users.
We perform experiments with 7 different mobile app types from
popular categories on the app store. iStelan discloses users’ touch
events with an average 90% accuracy, correctly classifies the app
that a user is using with an average 74% accuracy, and detects
the touch event labels of users with an average 73% accuracy. We
additionally perform comprehensive experiments to demonstrate
the effectiveness and performance of iStelan on unseen apps and
under various environmental conditions.

In summary, we make the following contributions:

• We show a new privacy leakage through the magnetometer
on iOS devices (iPhone and iPad) due to the electromagnetic
impact of human touch on capacitive screens.

• We introduce iStelan, which exploits 3D magnetometer sig-
nals to stealthily extract users’ touch actions in the back-
ground and develop machine learning and statistical models
for app fingerprinting and inferring touch events.

• We evaluate iStelan attack on a data set collected from 22
users and demonstrate its effectiveness in exposing users’
binary touches, app types, and touch event types.

2 ISTELAN INSIGHTS

2.1 Structure of Touch Screens

Capacitive touch screens have gained huge popularity in the smart-
phone industry due to their better optical performance and multi-
touch support [50]. Touch screens use electrodes to sense the con-
ductive properties of a user’s finger. Figure 1 shows the basic struc-
ture of a capacitive smartphone touch screen. It consists of two
diamond electrode grids made of conductive transparent material

Figure 1: Structure of a capacitive smartphone touch screen.

with an optically clear insulator in the middle. These conductive
grids are layered below a sheet of glass or film. When a voltage is
applied to the electrode grids, electric fields are projected on the
surface of the glass sheet [47]. Since the human body is a conductive
material, an electric change is detected when a finger approaches
the touch electrodes [49]. The processor then registers a touch and
determines its location.

The organization of electrodes in the form of a matrix of rows
and columns allows localization of the touch event at the coor-
dinates where the electric change occurs. There are two variants
of capacitive touch technology: self-capacitance and mutual ca-
pacitance. In self-capacitance, the capacitance occurs between the
conductive material (human finger) and electrode, while in mutual
capacitance, it occurs between two adjacent electrodes. Most mod-
ern smartphones rely on mutual capacitance that supports more
advanced touch gestures.

2.2 Effect of Touch Events on Magnetometer

Capacitive touch screens used in mobile devices comprise several
layers with a conductive material under the glass sheet containing
the electrode matrix. As the user’s finger touches the screen, a ca-
pacitance change occurs at the point of touch resulting in a change
in the electromagnetic field around this point. Based on Maxwell
theory [32], the electric field between capacitors sets up a displace-
ment current I(t). This displacement current causes a magnetic
field to be generated inside and outside capacitor plates [33]. The
magnetic field B(a, t) at a point at distance a from the capacitor is
computed using Ampere’s law: B(a, t) ∝ I(t)/2πa.

We observed that this change in the magnetic field could be
detected via the magnetometer embedded in smartphones since it
is placed at millimeters distance from the capacitive screen and has
a high resolution (up to 0.15 µT). Though this magnetic change is
relatively small compared to the ambient noise in the magnetometer
readings, we show that this effect can be exploited to leak touch
events through background apps. Furthermore, this data leakage
can be analyzed to understand the touch behavior of users to reveal
their private information, such as their app usage patterns.
Locating the Leakage in Mobile Devices. Many smartphone
vendors have adopted capacitive touchscreen technology. To in-
vestigate the existence of the described electromagnetic impact of
user’s touch on different smartphones, we tested various versions of
smartphones from different vendors, including Apple, Google, Sam-
sung, and Huawei. For each device, we installed an app that records
the magnetometer and touch data for 4 minutes on average. We
then compare the touch data (ground truth) with the magnetometer
readings to spot the touch effect.

80

iStelan: Disclosing Sensitive User Information by Mobile Magnetometer from Finger Touches Proceedings on Privacy Enhancing Technologies 2023(2)

Table 1: Impact of touch events on magnetometer in differ-

ent phones and tablets.

Phone version Type of screen Magnetometer Magnetometer effect

Google Pixel XL Capacitive/OLED AKM AK09915 ✗
Google Pixel 3a Capacitive/OLED STMicro LIS2MDL ✗
Huawei P20 Capacitive/LCD AKM ✗
Samsung S10 Capacitive/OLED AKM AK09918C ✗
iPhone 6 Capacitive/LCD AKM AK8963 ✓
iPhone 8 Capacitive/LCD Alps e-Compass ✓
iPhone XS Capacitive/OLED Unknown ✓
iPhone 12 Capacitive/OLED Unknown ✓

iPad (6
th

generation) Capacitive/LCD Unknown ✓

iPad Air (4
th

generation) Capacitive/LED Unknown ✓

Table 1 summarizes the type of screen and the existence of mag-
netic effect on these smartphones. We observed that the effect on
the magnetometer due to users’ touch is more significant on Apple
devices. The effect is consistently observed on different iPhone
and iPad versions. However, the electromagnetic impact of a user’s
touch is not significantly visible on other mobile devices. Our ex-
periments show that the main reason for this difference is that,
unlike other smartphones, iPhone devices use an adhesive material
between the screen layers which removes any air gaps and reduces
the thickness of the display. This allows small magnetic fields from
the touch screen to be sensed using the underlying magnetometer.

We additionally observed that the internal structures of differ-
ent phones are different. For example, in Apple devices, the main
board, which contains the sensors, is placed directly below the
touchscreen [21] while Samsung devices include a mid-frame be-
tween the screen and the main board [22]. This could also mitigate
the touch screen effect on the magnetometer, which makes it in-
distinguishable from the sensor noise. Therefore, we propose the
iStelan side-channel affecting iOS devices used by over a billion
users worldwide [55].
Demonstrating the Leakage Signal. Figure 2 shows the effect
of touch on the three axes of the magnetometer data collected
with a sampling rate of 100Hz from an iPhone XS after applying
a moving-average smoothing filter for noise removal. During a
touch event, the magnetic field changes cause a fluctuation in the
signal in the three axes of the magnetometer. In some cases, these
fluctuations are small compared to the ambient noise in the signal.
Yet, by combining the 3-Dmagnetometer data, we show that iStelan
is able to detect the touch events with 90% average accuracy. We
obtained similar results on other tested iPhone and iPad devices.

Currently, iOS supports a sampling rate of up to 100Hz for col-
lecting magnetometer data. However, we also study the impact
of touch on magnetometer data collected at lower sampling rates,
ranging from 10Hz to 100Hz. We observe that the magnetic effect
due to users’ touches is not affected by the sampling rate of the
magnetometer signal (Detailed in Section 5). Therefore, any future
iOS update limiting the sampling rate for the magnetometer sensor
would not impact the success of iStelan attack.

Additionally, we compare the effect of touch on the magnetome-
ter with other motion sensors in the phone, i.e., accelerometer and
gyroscope. These sensors were previously exploited as side chan-
nels for leaking users’ touch events [35, 62]. However, attacks based
on these sensors require a significant phone movement to detect a
touch event. When the phone is stationary or encounters a small
motion, these attacks fail since there is no effect on the accelerome-
ter/gyroscope. In contrast, the impact of touch on themagnetometer
data does not rely on any movement. Figure 3 shows the impact

Figure 2: Effect of touch event on 3 axes of themagnetometer.

The blue area shows the occurrence of a touch event.

Figure 3: Effect of touch events on different motion sensors.

The blue area shows the occurrence of a touch event.

Table 2: Comparison of data leakage constraints between

iStelan and prior work.

Approach (1)
†

(2)
‡

Restrictions

Motion Sensor Attacks

AlphaLogger [23] ✓ ✗ Hold phone with both hands and press keys with thumb
FreqKey [52] ✓ ✗ Hold phone in right hand and press keys with thumb
TouchLogger [7] ✓ ✗ Hold phone in hand
TapLogger [62] ✓ ✗ Hold phone in left hand and tap with the right hand forefinger
ACCessory [38] ✓ ✗ Hold phone in the landscape orientation, type with both thumbs

TouchSignatures [34] ✓ ✗
Hold phone in one hand and use the same hand’s thumb
Use both hands to perform the touch

Magnetometer-based Attacks

MagneticSpy [31] ✗ ✓ Does not evaluate their system on users
DeepMag [37] ✗ ✓ Does not evaluate their system on users
MagSnoop [13] ✗ ✓ Does not evaluate their system on users
MagTheif [40] ✓ ✓ None
iStelan ✓ ✓ None
† (1) The phone is in motion, and the user is stationary. ‡ (2) The phone is stationary

of a touch event on the accelerometer, gyroscope, and magnetome-
ter data of a phone placed on a table. All signals are shown after
pre-processing for noise removal1. The accelerometer/gyroscope
signals are not affected due to the lack of significant movements
in the phone body. In contrast, the magnetometer shows a sharp
signal fluctuation when the touch event occurs.

2.3 Comparison with Prior Work

Table 2 compares iStelan with previous works that proposed side-
channel attacks using motion sensors to infer sensitive touch data.
Although these works allow for stronger attacks than iStelan since
they infer sensitive information such as keystrokes and passwords,
they rely on the effect of hand motion on the motion sensors while
typing. Therefore, they require the user to be stationary (sitting
or standing) while holding the phone in hand. Furthermore, these
systems add predefined restrictions on how the user must use the
phone to be able to perform the side-channel attack. For example,
AlphaLogger [23], FreqKey [52], and ACCessory [38] require the
user to hold the phone in hand and type using the thumb. This en-
sures that the phone swings more violently while the user is typing,
providing a more significant effect on motion sensors. Additionally,
ACCessory requires the phone to be in landscape orientation to
guarantee a wider range of motion.
1We obtained similar results for other axes of three sensors, as shown in Appendix C.

81

Proceedings on Privacy Enhancing Technologies 2023(2) Mohamed et al.

FOREGROUND

BACKGROUND

iSTELAN
Touch Detection

Touch Events
Capacitive

Screen effect

Application Type
+

Touch-behavior

Personalized
Ads

GUI-Confusion
Attacks

Figure 4: iStelan’s threat model. The dotted lines indicate

stealthy data collection from the magnetometer and extrac-

tion of touch events in the background. The solid lines illus-

trate the app and touch event type inference of the attacker.

While these approaches achieve high accuracy, these additional
restrictions make their attack highly ineffective in practical scenar-
ios where the user holds the phone in hand in any orientation and
uses it freely. Moreover, none of the systems could infer touches
when the phone is stationary, e.g., placed on a table, such as in the
case of iPad, fixed on a tripod, or even held more stiffly in hand.
In contrast, iStelan infers touch activity and app types in more
practical scenarios since it does not impose any restrictions on how
the user holds the phone. Therefore, iStelan’s attack works both
when the device is stationary or held naturally in hand.

We highlight that most of the previous attacks are ineffective
when the user moves since the effect of touch on motion sensors is
masked by the user’s motion. This was also shown in FreqKey [52],
where their keystroke inference attack accuracy decreases when
the user is in motion. Similarly, we evaluated iStelanwhen the user
is walking and found that the attack accuracy decreases due to the
interference of motion with the touch pattern and the change in
the ambient magnetic field (Section 5). However, the attack works
for a wide range of scenarios when the user is sitting or lying.

Other works proposed magnetic-based side-channel attacks,
such as MagneticSpy [31] and DeepMag [37] that infer the ap-
plication type using fingerprinting of processor electromagnetic
emission and splash screen color effect on LED. MagSnoop [13]
also exploits the magnetometer sensor to infer payment tokens in
magnetic secure transmission. These works evaluated their sys-
tems with different apps in an automated way without performing
any experiments with users; therefore, they assume the phone is
completely stationary. MagTheif [40] also used the EM effect on
magnetometer to fingerprint apps and in-app services and proposed
to use other motion sensors to filter human motion from the mag-
netometer signal. However, it is highly prone to variations due
to background activity noises and ambient magnetic noises. We
expand on iStelan’s comparison with prior works in Section 7.
Responsible Disclosure. We contacted Apple’s product security
team to disclose our findings on the characteristics and steps of
side-channel observed in Apple devices. The security team acknowl-
edged our findings and will investigate this attack further.

2.4 Threat Model

We consider an adversary that controls a malicious native app
installed on the victim’s device, which accesses only the onboard
magnetometer of the victim’s mobile device while running in the
background (See Figure 4). The app does not have access to other
data, such as touch events, apps used or installed on the device,

 ... tap, swipe ...
Data Extraction and

Preprocessing

Binary Touch Extraction

Application
Classifier

Application
Type

Touch Event Type
Detector

Filtered 3D
signal

Figure 5: Overview of iStelan architecture

network traffic, and process statistics. The data collected by the
app is stored locally on the phone or transferred to a remote server.
Both methods incur minimal energy and computation overhead to
remain undetected by users and the operating system (Section 5).

We show that an adversary is able to disclose the victim’s touch
events solely using the magnetometer signals. From this, the ad-
versary uses pre-trained app fingerprints to identify the app being
used by the victim and the victim’s touch event types on the app.
To achieve these, the adversary trains the models using the data
collected from a set of users (17 users yields reasonable accuracy
(Section 5)) and packages with the malicious app.

Using the victim’s app type and touch event type, an adver-
sary can invade users’ privacy by identifying the victim’s interests
and browsing behavior. We show two case studies, GUI-confusion
attacks (Appendix E.1) and targeted advertisement attacks (Appen-
dix E.2), to demonstrate the practical attacks with iStelan side-
channel. Furthermore, an adversary can use the inferred touch
event types to predict users’ behavior and activities on different
apps [34]. For instance, if a user is using a shopping app, depending
on the pattern of touch event types, an attacker could detect the
frequency of her purchases. Previous works also showed that touch
event types could be used for different purposes, including emo-
tion detection by analyzing ‘typing’ and ‘swiping’ gestures [17]
and stress level assessment based on smartphone gestures analysis,
such as ‘tap’, ‘scroll’, ‘swipe’ and ‘text writing’ [14]. An adversary
can exploit such analysis to infer more private information about
users’ moods, assess their interest in apps, and target them with
different ads depending on their emotions and stress levels.

We note that all native iOS apps, by default, have access to
motion sensors, and only web apps from iOS 12.2 and onwards
require explicit user permission. Similarly, starting from iOS 5, an
app can stay active in the background if it performs certain tasks
(e.g., playing audio, accessing location, or using voice over IP). Thus,
an adversary can easily mimic a benign legitimate app, such as a
fitness tracking or music app, to stay active in the background and
collect motion sensor data without requiring explicit permissions.

3 APPROACH OVERVIEW

Figure 5 presents the architecture of iStelan system. iStelan first
splits the continuous 3D magnetometer sensor signals collected by
a malicious app into given time intervals. Low-pass and moving
average filters are then applied to each interval in each dimension
to remove noise and smooth the signal. Thereafter, iStelan trains
a DNN model with sequence-to-sequence mapping to transform
the continuous 3D magnetometer signals into binary touch data.
The touch events are represented as a binary sequence where 1
represents a touch, and 0 represents no touch.

82

iStelan: Disclosing Sensitive User Information by Mobile Magnetometer from Finger Touches Proceedings on Privacy Enhancing Technologies 2023(2)

From this, iStelan uses the touch events to learn the user’s be-
havior. First, it fingerprints the app type that a user is using by
exploiting the fact that different mobile apps exhibit different touch
patterns based on their functionality. To achieve this, it builds a
one-vs-all classifier to detect the app type. The extracted binary
sequence is encoded into a feature vector and fed into bidirectional
LSTM models. iStelan builds an LSTM model for every app type to
detect the app patterns and uses the aggregation max function to
output the app type.

In the last stage, the touch event type detector uses both touch
data and the identified app type to obtain a sequence of labeled
touch event types. We observe that the extracted binary touch
sequence is conditionally dependent on a hidden sequence of touch
types, which could be modeled as a Markov process. Additionally,
the transition between touch types depends on user actions unique
to each app behavior. Based on these observations, iStelan builds
an HMM model for each application type, where the binary touch
sequence is used to represent the observations and the touch-type
labels for hidden states. The HMM model outputs a labeled touch
sequence for a specific app type. These labels enable an attacker
to infer what a user is doing on an app, such as whether the user
swipes, taps, types, or long presses.

4 ISTELAN DESIGN

Implementing iStelan requires addressing several system chal-
lenges. (1) Magnetometer data extraction and preprocessing to
filter signal noise (Section 4.1). (2) Translating continuous 3D mag-
netometer signal into a binary touch-event sequence (Section 4.2).
(3) Building an app classifier to precisely assign touch events to
an app type (Section 4.3). (4) Building an HMM model to infer the
touch-type sequence of the user’s touch events (Section 4.4).

4.1 Sensor Data Extraction and Preprocessing

The malicious app installed on the victim’s phone collects the 3D
magnetometer signals at a sampling rate of 100Hz. The collected
data can be stored and processed locally or sent to a remote server
in batches for analysis.

We segment and preprocess 3D magnetometer signals before
extracting touch events. To detail, each dimension of the signal
is first segmented into samples of non-overlapping intervals of
window size (ws). We set ws=60 seconds based on our experiments
as detailed in Section 5. Each sample is then normalized to the [0, 1]
range and filtered to smooth the data and remove noise. To mitigate
the effect of random samples and fluctuations, we apply a moving
average filter with a smoothing factor of 0.1 secs.

The magnetometer signals may also yield high-frequency inter-
ference noise due to the residual magnetic distortions from mag-
netic parts placed on the phone, power supply current, and nearby
ferromagnetic objects. To eliminate this interference, we apply an
additional low-pass 6th order Butterworth filter [48]. The Butter-
worth filter uses a maximally flat magnitude, which results in a
flat frequency response in the passband below a cutoff frequency
(ωc). We observe that normal phone usage is unlikely to exceed 5
touches per second in our experiments. Thus, we set ωc to 5.

0 0.5 1 1.5 2 2.5 3

Time (s)

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4
Magnetometer Input

(a)

0 1 2 3

Time (s)

0

1

Ground-truth Touch data

(b)

(c) (d)

Figure 6: CNN feature extraction from magnetometer data.

(a) 3D magnetometer signals, (b) ground truth touch data,

and (c)-(d) different CNN filter outputs. The yellow regions

represent the touch events shown in (b).

4.2 Binary Touch Extraction

The preprocessed magnetometer signals are fed into the binary
touch extraction module. This module exploits the capacitive touch
screen effect on the magnetometer to transform the continuous 3D
magnetometer signal into touch events. Specifically, we represent
the touch events for a given time interval as a binary sequence,
where 1 represents a touch and 0 represents a no-touch.

To extract the touch events, we build a CNN-LSTM network that
maps the continuous 3D magnetometer signal to a binary sequence
of the same length. Lastly, a dense layer is used to classify each bit
to 0 or 1. This combined learning process is effective because CNN
layers exploit the spatial correlation, and LSTM layers capture the
temporal dependencies in the magnetometer data.
Feature Extraction. To extract features from the magnetometer
data, we use convolution neural network layers. The noise in the
magnetometer is often variable due to different users and ambient
environments. Due to this variability, it is infeasible to select one
filter size for extracting touch event features that generalize for all
conditions. A large filter size removes more noise, but it is prone to
losing useful touch features, while a small filter retains features but
is more affected by noise. To accommodate such variation, we use
two parallel CNN layers with different filter sizes, which provide
different views of the features extracted from the magnetometer
data. The features extracted from both layers are concatenated and
sent to the following layers for sequence mapping. In this way, we
increase the likelihood of detecting useful features and decrease
the negative effect of noisy samples.

We trained 15 different filters in each layer and collected a de-
velopment dataset to select the optimal filter sizes and other hyper-
parameters. Figure 6 illustrates an example of features extracted
through this process. The goal of iStelan is to transform the 3D
input signal in Figure 6a to the binary touch sequence in Figure 6b.
Figure 6c and Figure 6d show the heatmaps of two different CNN
filters used for extracting these touch features. The yellow regions

83

Proceedings on Privacy Enhancing Technologies 2023(2) Mohamed et al.

(a) Browser app

Select
chat

Send Receive Send

(b) Chat app

Browsing
Music

Listening Changing
volume

(c) Music app

Playing

(d) Board game

Figure 7: Illustration of touch fingerprint patterns identified for different applications.

in the CNN filter output represent the touch events shown in Fig-
ure 6b. By concatenating the features from both filters, the network
is able to suppress noise and accurately extract the touch data.
Sequence Mapping. The extracted features are used for the se-
quence mapping to extract the binary touch data. We use two layers
of bi-directional LSTM to learn the binary sequence. Each sample
at a time instance, t, in the sequence depends on the previous and
future samples. We design the network to predict the binary label,
zt/2, of the middle sample, st/2, at time instance, t/2, given a win-
dow of samples from s0 to st in the time interval [0, t]. We define
the classifier as follows:

zt/2 = argmax
ci∈{0,1}

P(ci |s0, . . . , st) (1)

This design enables the network to use the preceding and fu-
ture samples for each output. To compromise between the network
complexity, processing time, and sequence length, we use a sliding
window with a size of three seconds as network input, which cap-
tures the dependence between the sequence samples. The final layer
is a dense layer with a softmax activation function that classifies
the middle sample for each window as 1 if a touch is detected or 0
otherwise. We detail our network architecture in Appendix A.

4.3 Application Classifier

The leakage of touch events can be exploited in several ways. In
iStelan, we show the feasibility of detecting the app type a user is
using from the pattern of touch events. We found that the usage
patterns of different app types are unique and often repeat based
on the app functionality. Specifically, every time an app is used,
the user repeats a sequence of actions depending on the app type,
which results in a discriminating touch pattern.

Figure 7 shows an example of touch patterns for different apps.
In a browser app (Figure 7a), a user starts typing text in the search
bar, which appears as dense and narrow touch events. The user
then scrolls over the search results, giving more sparse and wider
touch events. Lastly, the user selects a page and remains idle for
some time to read. The chat app example (Figure 7b) starts with
the user selecting a chat room. The user then alternates between
typing, sending, and receiving chat messages. In a music app (Fig-
ure 7c), the user browses the available songs, selects a song, and
remains idle while listening. Occasionally, the user would change
the volume, press stop, replay, etc. A board game (Figure 7d) is
usually characterized by many small similar touch events.

Overall, we observe that each app results in a different touch
pattern, which enables iStelan to distinguish the app type. Several
patterns may exist for the same app; however, these patterns are
still limited by the possible user activities on the app. To account for
this, we collect samples from multiple users, which allows diversity
in the training dataset (Detailed in Section 5).
Application Classifier Design. We predict the app type from a
given sequence of binary touch data. First, we encode the binary
touch data into a feature vector, then feed it into a classifier to
detect the app type. The number of app types to be detected could
vary based on the attacker’s target and interests. Therefore, we
leverage the one-vs-all multi-class classification technique, where
we build a two-class classifier model for each app type. We train
each model using the data from all apps. For each model of an app
type c , the samples are labeled as 1 for c and 0 for all other apps.
To accommodate for class imbalance, we use weighted samples for
each class label. Specifically, each model has a binary output, which
gives 1 if the app’s pattern is detected and 0 otherwise.

The output of these models is aggregated using a max function,
where an app pattern with maximum probability is selected as the
detected app type. In some cases, the patterns could be very noisy.
In these cases, all app-type models will output 0 where none of
the models detect a valid pattern. The attacker could discard such
samples and wait for the target apps to be detected.

We use an LSTM network for each app-type model, which takes
a sequence of encoded touch data as input to capture the touch
pattern specific to an app. LSTM captures the temporal aspects of
the touch sequences using feedback connections. We compared
with other techniques in Appendix D. We define the length of the
input sequence as the app usage window size, ws. We found that a
ws up to 60 seconds better generalizes to new subjects and yields
more accurate classification (evaluated in Section 5).

Since the magnetometer sampling rate is 100Hz, a window size of
60 secs results in a sequence of 6000 samples. This input is relatively
large to be learned using the LSTM network, which may incur high
computation time in the background at inference time. To address
this problem, we apply integer encoding to the binary sequence of
touch events by counting the number of consecutive 0’s and 1’s.
A continuous patch of n 1’s is replaced by an integer k+, where
k+ = n. A continuous patch of m 0’s is replaced by an integer k−,
where k− = −m. Integer sequences are padded with zeros to achieve
equally sized sequences fed into the LSTM network.

84

iStelan: Disclosing Sensitive User Information by Mobile Magnetometer from Finger Touches Proceedings on Privacy Enhancing Technologies 2023(2)

4.4 Touch Event Type Detector

iStelan labels touch events with touch types given the extracted
binary touch data and the predicted app type. This adds another
stage to privacy-threatening inference, where it enables detecting
and analyzing the user’s activity on the app. We infer four different
touch event types: tap, swipe, type, and long press.

Since the different touch event types could be similar in the
binary sequence, e.g., a long press and a short swipe, we cannot
trivially predict the touch type from its length. To address this
problem, we model the touch event labeling problem as a statistical
Markovmodel with HMM [45] where the observations are extracted
from the binary touch data, and the touch types are the hidden
states. The sequence of touch events depends on the activities
performed on an app, i.e., differs with app functionality. Thus, we
build a separate HMM model for each app type to capture the
dependencies between touch event types.

We estimate the HMM parameters from a training dataset for
each app. When a sequence of binary data from a specific app ar-
rives, iStelan extracts the observations and uses the pre-computed
HMM model parameters to estimate a sequence of touch event
labels. HMM is selected for this task due to its effectiveness on
sequence data, where it models the data as a state machine and
uses statistical models to predict hidden states. We compared using
a baseline HMM with fixed parameters that depend only on the
frequency of labels for each app type. We also evaluated using one
model for all app types instead of a separate model per app. The
proposed HMM model with dynamic probabilities and separate
models shows the best performance since the touch sequences vary
for each app type (Detailed in Appendix D).

We extend the Viterbi algorithm [8] to compute the maximum
likelihood sequence (MLS) of hidden states for the current window
using dynamic programming.
Touch-TypeExtractor.The input to theHMMmodel is a sequence
of window size (ws) of binary touch data. A set of observations
Y = (y1, . . . , yM) is extracted from the binary data, where ym = (a, b)
for 1 < m < M is a pair of integers, a is the length of a touch event,
and b is the length of idle time preceding the touch event.

Let Sm = s1,m, ..., sN,m be the set of possible states for an obser-
vation ym, where N is the number of possible touch event types. To
infer touch-type labels, we use three probability distributions:

• The observation probability distribution of ym at state si,m is
defined as B = P[ym |si,m]. This represents the probability of ob-
serving input ym given the actual touch event label si,m.

• The state transition probability distribution from a state si to a
state sj. We define it as A = {aij}, where ai,j = P[sj |si].

• The initial state probability, π = {πi}, where πi = P[si,1]. We
assume it is uniform among all states.

iStelan finds the most probable sequence of touch event types,
S, from a given sequence of touch event observations, Y. We use
the Viterbi algorithm, which uses dynamic programming to infer
the hidden states sequence, S∗, modeled as S∗ = argmaxS P[Y|S].
Touch-Type Parameter Estimator. We use a training dataset,
Ω, to estimate the parameters to compute the observation and
transition probabilities. To compute the observation probability of
ym = (a, b), we first compute the frequency fi of observing a state

si in Ω. Given the total number of states in Ω is f, the observation
probability depends on fi/f. Second, the observation probability
depends on the event duration a. For example, a short event is more
likely to be a tap rather than a swipe. For each state, we assume
the event duration has a Gaussian distribution around a mean µa.
Therefore by combining these factors and assuming independence,
we model the observation probability as:

P[ym |si,m] =
fi
f
.

1
√
2πσa

e−0.5(
a−µa
σa

)
2

(2)

where µa and σa are the distribution mean and standard deviation
of event duration for state si,m estimated from Ω.

Similarly, the transition probability from state si to state sj
depends on two factors: the frequency of transition from si to sj
in the training set and the idle duration b between these transitions.
Therefore, to obtain the transition probability ai,j, we compute the
frequency fi,j of transitions from si to sj and the frequency fi of
all transitions from state si using Ω. The idle duration b between
touch events is also modeled as a Gaussian distribution. Assuming
independence, we define the transition probability as:

P[sj |si] =
fi,j

fi
.

1
√
2πσb

e
−0.5(

b−µb
σb

)
2

(3)

where µb and σb are mean and standard deviation of idle duration
between states si and sj estimated from the dataset Ω.

5 EVALUATION

We report our experience of applying iStelan attack on data col-
lected from 22 users in total. We analyze its effectiveness at each
attack stage in inferring users’ privacy-sensitive data. Our study on
17 users shows that iStelan yields an average accuracy of 90% in
uncovering users’ touch events, 74% in inferring app types, and 73%
in identifying the touch events of users. We also collected data from
5 users to evaluate iStelan with different samples of application
types or when the application type is unseen.

In addition, we conduct experiments to show iStelan’s perfor-
mance under different phone positions (e.g., when the phone is
placed on a table and when the user holds the phone in hand while
sitting/walking) and environmental factors (e.g., when the user
wears a metal object and uses the phone when people are around).

To the best of our knowledge, no prior work have presented an
end-to-end combination of touch event identification from magne-
tometer signals, app type classification from binary touch sequence,
and touch event label extraction through HMM. Thus, in Appen-
dix D, we perform a per-attack stage comparison against techniques
of prior work. We also compare iStelan with recent side-channel
attacks that detect touch events based on accelerometer and gyro-
scope motion sensors. iStelan yields higher accuracy than previous
approaches and is more effective at detecting touch events than
using the accelerometer and gyroscope. We present our results by
focusing on several research questions:
RQ1 How effective is iStelan in detecting the binary touch events,
app types, and touch event labels?
RQ2 What is the accuracy of iStelan per app?
RQ3 How does iStelan perform across different users?
RQ4How does iStelan perform at different sensor sampling rates?

85

Proceedings on Privacy Enhancing Technologies 2023(2) Mohamed et al.

RQ5 How robust is iStelan’s app classifier?
RQ6 What is the impact of different environment factors on
iStelan’s performance?
RQ7 How does the phone position affect iStelan’s performance?
Evaluation Setup.We evaluated iStelan on iPhone 10 XS device
running iOS version 14, which is provided to the participants in the
user study. We implemented an app that runs in the background,
acting as a malicious app, which mimics a legitimate fitness tracker
that has access to the magnetometer sensor and stays alive in the
background by accessing location services.

We selected seven open-source apps from the most popular
iPhone app categories on the app store2. These apps include a
board game, browser, music, chat, maps, shooting game and shop-
ping. These apps are similar in their functionality and design to
the popular apps found on the Apple store, i.e., 2048 Puzzle game,
Chrome browser, Spotify, Whatsapp, Google Maps, Classic Arcade
game, and Amazon shopping. Additionally, we conducted experi-
ments on 14 apps from the same 7 app types, where we tested on
two new samples per app type.

We also collected data from 5 new app types, including ToDo,
Finance tracking, Instagram, Weather, and Text Editor, to evaluate
iStelan performance on unseen app types. The app details are pro-
vided in Appendix B. The malicious app collects the magnetometer
data at 100Hz in the background. For ground-truth, we record the
touch API data from each app when used in the foreground. The
malicious app consumes, on average, less than 3% of a fully charged
battery while logging the magnetometer data over 2 hours.

During our experiments, we did not restrict background applica-
tions or services. While performing each experiment, a participant
used 3 to 4 apps, which could be open in the background. The phone
used in the experiments has approximately 50 apps allowed to op-
erate in the background. These apps are likely to have background
services running during the experiments.

We train the models on a desktop with a 2.4GHz 6-Core Intel
Xeon E5-264 processor with 32GB RAM and Nvidia Quadro M4000
GPU with 8GB RAM, using Keras with Tensorflow backend.
User Study and Data Collection.We performed a user study to
evaluate the effectiveness and performance of iStelan. We collected
data from 17 subjects recruited at the university campus, including
5 females and 12 males. We asked 8 subjects to use board game,
browser, chat, and music apps (Apps_A1); the other 9 subjects to
use map, shooting game, and shopping apps (Apps_B1). We col-
lected more data from 5 additional male subjects using different app
samples (Apps_A2, A3, B2, B3) and unseen app types (Apps_C,
C’). All subjects are graduate or undergraduate students. The app
sets used by each subject are given in Appendix B.

Although subjects were already familiar with the popular app
types used in our experiments, we show them how to start the
apps due to the slight variations in our app samples. We then asked
each subject to use different apps as they typically use them in real
life, while magnetometer data is collected in the background. A
subject uses each app for 10 minutes. Subjects use the phone when
placed on the table, in hand while sitting and walking, depending
on the conducted experiment type (Section 5.1). Each app sample
duration is one minute. Subjects were allowed to switch between
2https://www.statista.com/statistics/270291/popular-categories-in-the-app-store/

Figure 8: A trace example of Stage-1 output. The predicted

trace (red, solid) follows the ground truth (blue, dashed).

apps after each sample. To evaluate different use cases and envi-
ronment scenarios, we asked a set of users to intentionally wear
metal objects or use the phone in a lab, at home, or in a hall when
people are around. To demonstrate iStelan’s effectiveness when
a user switches apps, we performed experiments where a subject
uses an app for an arbitrary time and then switches to another app.
In total, we collected over 13 hours of data. A pilot experiment was
initially done on one user for parameter tuning. Classifiers were
trained for up to 50 epochs to select the best models.

We employ the leave-one-out method to evaluate the perfor-
mance of each attack stage of iStelan. Specifically, we pick each
user once for testing as the unseen user, while the rest of the users’
data is used for training the models. This means an attacker can
collect data from a set of users to train iStelan models and test
them with unseen users. We repeat this process for all users and
then report the average performance metrics for each attack stage.
Ethics. We obtained approval from the Institutional Review Board
(IRB) for our user study. We advertised our study through the in-
ternal campus email listings and Slack channels. Participants are
asked to sign a consent form where we explain the study details and
data collection. Participants are informed that their participation
is voluntary and they have the right to quit the experiment at any
time. During the experiment, we provide the smartphone to the
participant and verbally explain the user study procedures. We ask
the participants not to enter any personal data. We do not collect
sensitive data except touch event duration and magnetometer data.
The data is stored securely and confidentially on our servers.

5.1 Effectiveness

The experimental results reported here were conducted in a CS lab
environment where electrical devices such as monitors, computers,
and laptops were present in the surroundings. Each user used a
phone placed on a table in the lab and was wearing their everyday
clothes, including jackets with metal zips, phones, and keys in
pockets or backpacks around them. We present other experimental
scenarios in Section 5.3.
iStelan Performance (RQ1). We evaluate the accuracy of each
stage of iStelan on the data collected from 17 users while using
app sets Apps_A1 and Apps_B1. We refer to the three stages
of our attack as Stage-1, Stage-2, and Stage-3 for binary touch
extraction, app classification, and touch event type detection.

Figure 8 shows an example of an extracted binary touch trace
from a user compared to the ground truth touch data collected
through iOS touch API. We multiply the ground-truth data by a

86

https://www.statista.com/statistics/270291/popular-categories-in-the-app-store/

iStelan: Disclosing Sensitive User Information by Mobile Magnetometer from Finger Touches Proceedings on Privacy Enhancing Technologies 2023(2)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Stage 1 Stage 2 Stage 3

A
v
g
.
A

c
c
u
ra

c
y

With Ground Truth
With Pred.

Figure 9: Average accuracy of iStelan attack stages. For

Stages 2 and 3, the blue and grey bars show the accuracy us-

ing ground truth and predicted binary touch data.

factor of 0.9 for visualization. The predicted touch event sequence
(output of Stage-1) accurately follows the ground truth touch data.
We compute the accuracy by comparing every bit of the ground
truth and the prediction traces using the leave-one-out method
and averaging among all users. Figure 9 shows that iStelan ex-
tracts users’ touch (Stage-1) with an average 90% accuracy. This
corresponds to 88% recall, 90% precision, and 89% F-measure.

To show the impact of our binary touch extraction module on
the following stages, we compute the accuracy of app classifica-
tion (Stage-2) and touch event type detection (Stage-3) (a) using
the ground truth binary touch data, and (b) using the predicted
binary touch data from Stage-1. For app classification (Stage-2),
we compute the percentage of correctly classified apps averaged
among all users. Figure 9 shows that the average accuracy for app
classification is 75% using ground truth data and slightly decreases
to 74% using the predicted data from Stage-1. These results show
that iStelan is effective for an end-to-end real-time privacy attack.

The output of the touch-type detection is a sequence of labeled
events. Binary extraction (Stage-1) errors introduce false-positives
(FPs) where touch events not in the ground truth are falsely detected
and false-negatives (FNs) where true touch events in ground truth
are not detected. Due to these FPs and FNs in Stage-1, the labeled
ground truth touch sequence and the predicted sequence using
the binary extracted data may not perfectly align. Therefore, to
evaluate Stage-3, we first perform a sequence matching between
ground truth and predicted sequence labels. We use the percentage
of true positive (TP) labels detected from the ground truth sequence
for accuracy. We ignore the FPs of Stage-1; since they do not map
to corresponding labeled events in the ground truth.

We define the number of correctly labeled events as Ec and
the length of the labeled ground truth sequence as LGT; thus, the
accuracy is defined as Ec/LGT. Figure 9 shows that the touch-event
type detector (Stage-3) achieves, on average, 73% accuracy using
both ground truth and predicted binary touch events, making it
feasible to learn user’s touch behavior within apps.
Per-Application Accuracy (RQ2). In this set of experiments, we
evaluate the accuracy of each attack stage of iStelan for different
apps. As shown in Figure 10, the binary touch extraction accuracy
(Stage-1) is consistent across different apps.

We next present the accuracy of the app classifier (Stage-2) per
app. We note that our one-vs-all classifier might fail to detect any
app pattern, i.e., the output of all app models is 0. In our dataset,

only 7% of the samples are not classified to any app. We consider
these as noisy samples and discard them from further evaluation.

The confusion matrix of the app classifier (Stage-2) is shown in
Figure 11. We found that the board game app is classified with the
highest accuracy, given its distinct touch fingerprint patterns. Since
browser and map apps often have similar touch activity (e.g., if a
user searches for a location on a browser or a maps app), this leads
to some confusion between the two apps. Despite this confusion,
the touch pattern revealed by iStelan can be used by an attacker,
e.g., to recommend a maps app to users using maps on a browser.

Lastly, the accuracy of the touch event type detector (Stage-3)
for different apps is shown in Figure 12. The board game app has
the highest accuracy due to the high frequency of swipes and taps.
The average accuracy is between 61%-75% for other apps.
Per-User Accuracy (RQ3). We study whether iStelan’s perfor-
mance is affected by different users. Figure 13 shows the perfor-
mance of three stages of iStelan for 17 users. We note that in all
our experiments, the users were wearing their everyday clothes,
including jackets with metal zips, and having their phones and keys
in their pockets or backpacks. Each user was asked to use apps as
they would typically use them in real life. Despite this variability,
the system shows consistent results for the three stages across dif-
ferent users. We observe standard deviation of 0.03% for Stage-1,
0.1% for Stage-2 and 0.06% for Stage-3 across users.
Impact of Sampling Rate (RQ4). One defense approach to mit-
igate sensor-based side-channel attacks is to reduce the sensors’
sampling rate for background apps. Therefore, we evaluate how
iStelan performs under varying sampling rates. Figure 14a shows
iStelan’s (Stage-1) accuracy at different sampling rates ranging
from 10Hz to 100Hz. We observe slight accuracy differences at
different sampling rates due to the changes in the data sequence
length at different rates, causing changes in the features and model
weights. However, with all sampling rates above 10Hz, iStelan’s
accuracy is consistently greater than 88%, which shows that the
changes in sampling rate are not effective against iStelan attack.

5.2 Robustness of Application Classifier

We evaluate the robustness of the app classifier (RQ5) by varying
its window size parameter, testing when the user switches between
apps, and when tested on an app type with a different UI.
Window Size Parameter. The app classification takes the window
size (ws) of the touch data as an input. We evaluated the app classi-
fier’s performance using different window sizes within the range
of 10 to 60 secs. As shown in Figure 14b, iStelan correctly infers
the app type when the window size increases. The best accuracy
is observed when a victim spends at least 40 secs on an app. If the
victim spends 20 secs using an app, iStelan is able to identify the
app type with 70% accuracy. Considering an average time of 20-40
secs, this leads to on average 74% accuracy.
Application Transitions. We evaluate the accuracy of iStelan
when the user uses an app for an arbitrary time and then switches
to another app. We asked a user to use one app for an arbitrary
interval between 30-60 secs, then switch to another app for another
interval between 30-60 secs. We repeat for all the combinations of
transitions between 4 apps. Each experiment is repeated 3 times for
each transition. We use the default classifier model trained when

87

Proceedings on Privacy Enhancing Technologies 2023(2) Mohamed et al.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Boa
rd

 G
.

Bro
w
se

r

M
us

ic
C
ha

t

M
ap

s

Sho
ot

in
g

G
.

Sho
pp

in
g

A
v
g
.
A

c
c
u
ra

c
y

Figure 10: Accuracy of binary touch ex-

traction for different apps (Stage-1).

Figure 11: Confusionmatrix of the app

classifier (Stage-2).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Boa
rd

 G
.

Bro
w
se

r

M
us

ic
C
ha

t

M
ap

s

Sho
ot

in
g

G
.

Sho
pp

in
g

A
v
g

.
A

c
c
u

ra
c
y

Figure 12: Touch event type detection ac-

curacy for different apps (Stage-3).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

A
v
g

.
A

c
c
u

ra
c
y

User No.

Stage 1
Stage 2
Stage 3

Figure 13: Accuracy for each user in different attack stages.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

10 20 40 60 80 100

A
v
g
.
A

c
c
u
ra

c
y

Sampling Frequency (hz)

(a)

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 10 20 30 40 50 60

A
v
g

.
A

c
c
u

ra
c
y

ws (s)

(b)

Figure 14: Impact of (a) magnetometer sampling rate on bi-

nary touch extraction accuracy (Stage-1), and (b) window

size (ws) on app classification accuracy (Stage-2).

using one app at a time and test using the transition data. Since the
start of the app is unknown, we use a sliding window of 40 secs
(see Figure 14b) with a step of 5 secs to allow for pattern changes in
each window. Table 3 demonstrates that iStelan correctly classifies
the apps before and after the transition phase. The accuracy slightly
decreases to 77% during the app transition as the user performs
quick swipes, which iStelan does not separate from the app usage
pattern. However, since the app transition phase is relatively small,
on average 6.36 secs, iStelan quickly detects the app that the user
switches to after the transition phase ends.
Applications with Different UIs.We evaluate how iStelan’s app
classifier (Stage-2) performs when trained and tested on a different
set of app samples from the same categories. Since iStelan, for
example, can correctly classify the chat app category, it should be
able to classify a different chat app. For this purpose, we conducted
an experiment where two subjects used two new samples from each
app type. For the board game, browser, chat, and music app types,
the two new samples are given in sets Apps_A2 and Apps_A3.
While for the maps, shooting, and shopping app types, the two
new samples are given in sets Apps_B2 and Apps_B3. These are

Figure 15: App classifier’s confusionmatrix on appswith dif-

ferent UI (Stage-2).

open-source apps similar in their functionality to the training apps
but with a different UI (e.g., Chrome browser and Mozilla browser).

We used the data from previous experiments, collected from 17
subjects using Apps_A1 and Apps_B1 for training. We tested on
data collected from two subjects while using the new set of apps.
Figure 15 shows the confusion matrix for the app classifier when
tested on these unseen apps. iStelan accurately classifies an app
type even if the UI is different due to the similarity in the extracted
touch patterns for apps in the same category.
Unseen Application Categories.While an attacker trains a clas-
sifier using app types of interest, touch patterns from unseen apps,
i.e., not in the training set, could also be collected. The attacker
needs to detect the unseen app types and discard them.

Intuitively, unseen app types should be classified as negative by
all of the binary app classifiers. However, these supervised clas-
sifiers build a decision boundary between positive samples (from
one app type) and negative samples (from the remaining 6 app
types) during training. During testing, a new sample from an un-
seen app type is not guaranteed to be correctly classified. Therefore,
an additional layer is needed to detect and filter the unseen types.

We use the Local Outlier Factor (LOF) algorithm for novelty
detection [6]. LOF is a semi-supervised technique trained using
our initial training data as positive samples. The goal is to detect
whether a new sample is an outlier (negative sample). The LOF
algorithm finds anomalous data points by measuring the local devi-
ation of a given data point with respect to its neighbors. A point
with a lower density than its neighbors is an outlier.

88

iStelan: Disclosing Sensitive User Information by Mobile Magnetometer from Finger Touches Proceedings on Privacy Enhancing Technologies 2023(2)

Table 3: iStelan accuracy with application transition.

Detection interval Average App Classification Accuracy

Before & after transition 0.81
During app transition 0.77

Overall accuracy 0.80

Table 4: Effect of environment changes on attack stages.

Environment Scenario Stage 1 Stage 2 Stage 3

Wearing a metal object 0.86 0.79 0.72
At home environment 0.93 0.82 0.83

In hall with people around 0.92 0.86 0.86

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

On table In hand
(Sitting)

In hand
(Walking)

A
v
g
.
A

c
c
u
ra

c
y

Stage 1
Stage 2
Stage 3

Figure 16: Accuracy with different phone positioning.

We collect data from two participants using five new app types
(ToDo, Finance tracking, Instagram, Weather, and Text-Editor) from
sets Apps_C and Apps_C’. We train the model on the initial data
of the 7 app types from Apps_A1 and Apps_B1. For testing, we
collect data from the same 7 app types from two participants using
sets Apps_A2 and Apps_B2, to be used as the positive test sam-
ples. We use the data from the 5 unseen apps as negative samples.
iStelan detects the unseen apps (negative samples) as outliers with
an accuracy of 78% while the known apps (positive samples) are
detected as inliers with an accuracy of 72%. These errors are due to
the similarity in touch patterns from some of the unseen apps with
the apps used in training, e.g., finance and shopping apps.

Without the novelty detection layer, the binary classifiers only
detect 29% of the unseen apps. We also tested another approach
where we train a separate novelty detection model for each of the
7 app types. A new sample from an unseen app-type is fed into
the 7 models and should be detected as a negative sample from
all models. This technique achieves similar accuracy for negative
samples (78%) while a lower accuracy for positive samples (64%).
The reason is that the number of samples per app is relatively
low, making novelty detection more challenging. We also applied
a set of other popular novelty detection algorithms, frequently
used for sequential data: One-class Support Vector Machine [57],
k-Nearest Neighbors [18], K-means [10], Isolation Forest [27] and
Least-squares Probabilistic Classifier [44]. We find that the accuracy
of these algorithms is lower compared to the LOF algorithm since
it provides a better representation of the high-dimensional touch
features and considers sample densities in measuring the distance
between samples from known and unseen apps.

5.3 Environmental Factors

Effect of Different Environmental Factors (RQ6). The previ-
ous experiments were conducted in a CS lab setting where electrical

devices (e.g., monitors, computers, and laptops) were present. The
presence of these devices does not impact the iStelan performance.
However, other environmental factors (e.g., non-static metallic ob-
jects) could affect the magnetometer data.

To evaluate the impact of the ambient magnetic field on iStelan’s
performance, we conducted two additional experiments with one
subject in a home environment (setting-1) and with one subject
in a hall with people present in the surroundings (setting-2). Ad-
ditionally, we evaluate how iStelan’s performance is affected by
the presence of metallic objects in the vicinity of the phone. For
this purpose, we asked a subject to perform experiments in the lab
setting while wearing a metallic bracelet on their wrist (setting-3).

Table 4 summarizes the accuracy of iStelan for each of the de-
scribed scenarios. We use the model trained in the default settings
to evaluate these scenarios. iStelan performs consistently across
environments with different ambient magnetic fields. When the
user wears a metallic bracelet, we observe little magnetic interfer-
ence from the bracelet, resulting in an average accuracy of 86% for
binary touch extraction compared to 90% accuracy in the default
setting without the bracelet (RQ1). Yet, the metallic bracelet’s mag-
netic impact is much smaller than the magnetic impact of the user’s
touch despite its closeness to the smartphone. Therefore, iStelan
can accurately extract the touch data and use it for app classification
and touch event type detection, regardless of this interference.
Effect of Phone Position (RQ7). The magnetic field measured by
the magnetometer can be affected by how the user uses the phone.
The experiments in Section 5.1 were conducted with the phone
placed on a table to show that iStelan does not require movement
of the phone to detect touches. To evaluate the performance of
iStelanwith different phone positioning, we conduct two additional
experiments with one subject in each: (a) phone in hand while the
user is sitting, (b) phone in hand while the user is walking.

Figure 16 shows the accuracy of iStelan with different position-
ing. We found that accuracy is consistent when the phone is on a
table or in hand with the user sitting, which shows the applicability
of iStelan attack with widely used phone usage scenarios. When
the user is walking, iStelan still achieves an accuracy of 81% for
binary touch extraction (Stage-1). However, the accuracy becomes
low for Stage-2 and Stage-3. The main reason is that the ambient
magnetic field changes rapidly when the user is walking, which
mitigates the magnetic effect of the touch. This was also proven by
the previous works [2, 52] that use sensors to infer touches, where
none of these works achieve good results with the user in motion
scenarios, as detailed in Section 2.

6 LIMITATIONS AND DISCUSSION

6.1 Countermeasures

In order to mitigate iStelan’s attack, the design of touch screens in
iOS devices can be changed or improved to isolate their magnetic
effect, which could prevent information leakage. However, design
changes are costly and time-consuming, and modifying existing
mobile devices would be more expensive. Thus, we describe several
countermeasures to mitigate or prevent iStelan attack.

The first defense, noise injection, hides the capacitive screen effect
on the magnetometer by injecting noise into its signal. The noise
must interfere with the small effect on the magnetometer due to

89

Proceedings on Privacy Enhancing Technologies 2023(2) Mohamed et al.

0 5 10 15 20

Time (s)

-2.4

-2.2

-2

-1.8

-1.6

(a) Original signal (stationary)

0 5 10 15 20

Time (s)

-6

-4

-2

0

2

(b) After noise injection

0 5 10 15 20

Time (s)

-25

-20

-15

-10

-5

0

5

(c) Original signal (walking)

0 5 10 15 20

Time (s)

-20

-10

0

10

(d) After noise injection

Figure 17: Effect of noise injection on themagnetometer sig-

nal: (a)-(b) when the phone is stationary and (c)-(d) when the

user is holding the phone and walking.

touches while still guaranteeing correct functionality for legitimate
apps that use the magnetometer. We implemented this defense
technique by adding Gaussian noise to the magnetometer signal
with a small signal-to-noise ratio, SNR = 0.3.

Figure 17 shows the effect of signal injections. The added noise
clearly hides the touch effects when the phone is stationary. How-
ever, when the user is walking, the small fluctuations due to the
touch are hidden, while the overall trend of the signal is still the
same. Our finding highlights that this technique would not harm
apps that require coarse-grained magnetometer data for operation,
such as navigation apps. However, in apps where more fine-grained
information is required, e.g., as in gaming apps, the correct func-
tionality of the app is affected by this noise injection. Moreover, it is
difficult for the vendors to implement this defense to find complete
test scenarios to ensure app functionality is not affected.

The second defense is the malicious app detection, where the OS
can monitor apps’ behavior and flag apps that potentially deviate
from their normal behavior [26, 46, 51], e.g., apps that periodically
send collected data to a remote server at a high rate. However,
profiling the expected behavior of apps often leads to high false
alarms [1]. Other defenses, such as App-Guardian [64], propose to
detect malicious apps on the application level without modifying
the OS. It works by pausing suspicious background apps when a
protected app comes to the foreground. It then resumes the back-
ground apps after the protected app finishes its tasks. App-Guardian
learns side-channel information of apps to infer their suspicious
activities, including the name of a service thread, a thread’s sched-
uling status, and the amount of kernel time it consumes. iStelan
only collects magnetometer sensor data in the background, which
is considered insensitive data by iOS; thus, it could act totally as
a legitimate app (e.g., a fitness tracking app). However, due to the
potential side channels of motion sensors, App-Guardian might
consider sensor data as sensitive and, therefore, flag iStelan’s app
as malicious. Yet this approach, as acknowledged in their limita-
tions [64], can terminate legitimate apps affecting their utility. This
brings a level of inconvenience to the user who could experience
delays or stop background services. Therefore, [64] suggests that

more accurate identification of malicious activities is required to
balance the tradeoff between privacy and apps’ utility.

The last defense technique, restrictive methods, restricts back-
ground access to the sensors by the OS [20, 43]. However, this
would negatively affect the functionality of several apps collecting
magnetometer data for their required operations. The iOS could
also add explicit permissions for sensors to increase restrictions
over apps accessing sensors; however, most users grant permissions
since they are unaware of the threats behind motion sensors [42].

6.2 Improving iStelan Accuracy

Large-Scale Data Collection to Improve Generalization. We
evaluated iStelan on a total of 22 users on 7 app types. Each user
performs 10 experiments per app. In order to improve the attack
accuracy, an attacker could perform a large-scale data collection
from more users on a larger number of apps, with multiple app
samples per app type. This may help increase the generalization
of the model by covering a variety of usage patterns for each app
type and properly improve its ability to adapt new test data.
Using Different Data Modalities. An attacker may also combine
different side channels that exploit magnetometer data to improve
iStelan’s accuracy. For example, other techniques for app finger-
printing leverage patterns in magnetometer data resulting from
varying CPU workload, battery, or app usage [31, 40]. While these
techniques could be prone to high errors due to app variations and
background noise (shown in Appendix D), combining the finger-
print data from different side channels as inputs of a model or using
multiple learning algorithms for each side channel and ensembling
their results may improve the detection results of iStelan.
More Sophisticated ML Algorithms. iStelan’s accuracy could
also be improved using more sophisticated ML algorithms. For
instance, contrastive learning could be extended for outliers detec-
tion [19] to reduce the impact of the noisy samples on the iStelan’s
overall accuracy, and for supervised learning that makes the same
class samples (app types) to be pulled together while different
classes are pushed apart [24]. Other types of ML algorithms, such
as auto-encoders and attention mechanisms [58], could also be
integrated into iStelan for touch extraction and application classifi-
cation for improving accuracy. However, direct application of these
approaches to iStelan requires large-scale data collection and prior
knowledge of task-dependent and specific invariances [60].
Domain-Specific Attacks. iStelan could also be exploited by an
adversary to launch different attacks with relatively low confidence
or increase the confidence in existing attacks. For example, an
attacker could train a classifier to detect specific application types
that are popular in certain locations and further increase confidence
by increasing the samples of this particular type. This app type
can be used to launch GUI-confusion attacks, allowing the attacker
to steal data from the victim phones. This will enable inferring
sensitive information of several victims even if the attack confidence
is low. The attacker can also target specific victims to learn their
behavior and infer their sensitive data. Another potential attack is
to track users’ behavior across different apps, which became more
crucial after Apple added the app tracking transparency (ATT)
permission. Due to this permission, app developers are trying to
find potential ways to fingerprint users’ phones and infer their

90

iStelan: Disclosing Sensitive User Information by Mobile Magnetometer from Finger Touches Proceedings on Privacy Enhancing Technologies 2023(2)

behaviors on different apps [25]. iStelan could be integrated with
other data to increase the probability of detecting users’ behavior,
allowing more personalized ads and increasing revenue.

6.3 Limitations

We demonstrated that changes in the environment, including differ-
ent locations or the presence of nearby metal objects, do not affect
the touch detection model. Yet, detecting the small fluctuations in
touch events would be challenging in some scenarios, such as while
a user is walking, in a vehicle, or in an elevator, since the ambient
magnetic field changes rapidly.

iStelan could be extended to use a more sophisticated filtering
step to address these scenarios. For example, the system could first
detect when the user is moving using a combination of motion sen-
sors, then launch the attack when the device is stationary. We note
that side-channel attacks exploiting motion sensors for inferring
touch data also share this limitation, detailed in Section 7.

iStelan is able to accurately detect whether a touch event occurs;
however, it does not detect the exact touch location, which can be
used to infer a user’s keystrokes. Our experiments showed that
detecting the touch location in practical scenarios is challenging
since the impact of touch on themagnetometer slightly varies across
different screen locations. Future work will explore the intensity of
the magnetometer fluctuations with additional features from other
built-in sensors to infer touch locations.

Lastly, we show that iStelan can detect various app types with
different features; however, if the app is very complex with several
complicated features, the touch patterns would be random and not
be easily detected by the app classifier. However, this behavior is
unlikely to appear in popular apps, where app designers target
simplicity and repetitiveness to increase the usability of apps.

7 RELATEDWORK

Touch Behavior Inference via Mobile Sensors. Recent efforts
have explored potential data leakage by inferring users’ touch be-
havior from smartphone touchscreens. ACCessory [38] demon-
strated that typing on smartphone touchscreen results in accelerom-
eter fluctuations, which leaks sensitive user information. However,
this attack works when the user holds the device in landscape using
both hands and enters text using her thumbs. TouchSignatures [34]
exploited motion sensor data collected throughmalicious JavaScript
code on web browsers to identify touch actions and infer user PIN
codes. Similarly, TapLogger learned the patterns in motion sensor
data to infer different tap events [62].

These works rely on a noticeable movement in the phone body to
detect touch actions via the accelerometer/gyroscope data and add
restrictions that hardly apply to many smartphone use scenarios in
practice. In contrast, iStelan does not rely on any smartphonemove-
ment. It exploits the electromagnetic touch impact on capacitive
smartphone screens, even when the phone is completely stationary
or freely used, covering more practical scenarios.
Side-channel Attacks via Electromagnetic Sensing. Recent ef-
forts have unveiled several side-channel attacks based on electro-
magnetic data collected by smartphone magnetometers. Recent
works [4, 12] showed that the electromagnetic effect of a computer

drive could be exploited by the magnetometer of a nearby smart-
phone to infer system details or user activities. These works rely
on close proximity between a user’s smartphone and computer and
leak information about apps used on a computer.

Electromagnetic sensing has also been exploited for eavesdrop-
ping on user handwriting by analyzing the magnetic field changes
of stylus pens [16, 28]. However, they require the attacker device
to be placed within close proximity of the target device and are
limited to stylus pens with embedded magnets. In contrast, iStelan
leverages the small impact of human touch on the onboard magne-
tometer to infer privacy-sensitive information.

Another line of work demonstrated that electromagnetic emis-
sions from smartphone processors could reveal information about
ongoing activities, allowing device identification [41] and web-
site/app fingerprinting [31]. However, they make impractical as-
sumptions about device usage (e.g., no background activity and only
one tab open in a browser). Moreover, the fingerprints of apps rely
on specific configurations, which are unknown in practical scenar-
ios. MagThief [40] also proposed to detect app usage information
from the EM signals emitted during the execution of app-related
tasks. However, this work is also highly prone to variations due to
background activity noises and ambient magnetic noises. A recent
work [37] observed a correlation between the color emitted by the
phone LED display and magnetometer data and used a DNN to
infer users’ app usage. Yet, it assumes apps have different splash
screen colors and is affected by app performance or changes in UI.
In contrast, iStelan is robust to UI changes and does not rely on
app performance or phone configurations. Other works exploited
the built-in magnetometer for eavesdropping on Magnetic Secure
Transmission in mobile payments, e.g., Samsung Pay [13].

Recent works [30, 50, 59] have also exploited capacitive screens
to induce touch events through EMI interference on a victim’s
smartphone. However, they require external hardware to be placed
in the user’s vicinity. iStelan exploits leaked touch data remotely
to infer the user’s activity without using any extra hardware.

8 CONCLUSIONS

In this paper, we present a new type of side-channel leakage in
iOS devices; the electromagnetic effect of capacitive touch screens
is observed through the onboard magnetometer sensor. This side-
channel eliminates the restrictions of prior works on how users hold
their phones and detects users’ touch activity both when the device
is stationary and naturally held in hand. We introduce iStelan,
which exploits this effect to expose users’ sensitive data, including
their touch events, the app type they are using, and touch event
types within the app. We conduct extensive experiments to show
the practicability of iStelan attack with data collected from 22 users
and evaluate its performance in different scenarios.

ACKNOWLEDGMENTS

We thank our shepherd and the anonymous reviewers for their
comments and suggestions. This work has been partially supported
by the National Science Foundation (NSF) under grant CNS-2144645
and startup funding from Purdue University. The views expressed
are those of the authors only.

91

Proceedings on Privacy Enhancing Technologies 2023(2) Mohamed et al.

REFERENCES

[1] Yasemin Acar, Michael Backes, Sven Bugiel, Sascha Fahl, Patrick McDaniel, and
Matthew Smith. 2016. Sok: Lessons learned from android security research for
appified software platforms. In IEEE Symposium on Security and Privacy (IEEE
S&P).

[2] Adam J Aviv, Benjamin Sapp, Matt Blaze, and JonathanM Smith. 2012. Practicality
of accelerometer side channels on smartphones. In Annual Computer Security
Applications Conference (ACSAC).

[3] Antonio Bianchi, Jacopo Corbetta, Luca Invernizzi, Yanick Fratantonio, Christo-
pher Kruegel, and Giovanni Vigna. 2015. What the app is that? deception and
countermeasures in the android user interface. In IEEE Symposium on Security
and Privacy (IEEE S&P).

[4] Sebastian Biedermann, Stefan Katzenbeisser, and Jakub Szefer. 2015. Hard drive
side-channel attacks using smartphone magnetic field sensors. In International
Conference on Financial Cryptography and Data Security.

[5] J.P.G. van Brakel. 2014. Robust peak detection algorithm using z-scores. https:
//tinyurl.com/5bv9p4sy. (version: 2020-11-08).

[6] Markus M Breunig, Hans-Peter Kriegel, Raymond T Ng, and Jörg Sander. 2000.
LOF: identifying density-based local outliers. In ACM SIGMOD international
conference on Management of data.

[7] Liang Cai and Hao Chen. 2011. TouchLogger: Inferring Keystrokes on Touch
Screen from Smartphone Motion. HotSec (2011).

[8] Olivier Cappé, Eric Moulines, and Tobias Rydén. 2006. Inference in hidden Markov
models. Springer Science & Business Media.

[9] Z Berkay Celik, Earlence Fernandes, Eric Pauley, Gang Tan, and Patrick McDaniel.
2019. Program analysis of commodity IoT applications for security and privacy:
Challenges and opportunities. ACM Computing Surveys (CSUR) (2019).

[10] Varun Chandola, Arindam Banerjee, and Vipin Kumar. 2009. Anomaly detection:
A survey. ACM computing surveys (CSUR) (2009).

[11] Qi Alfred Chen, Zhiyun Qian, and Z Morley Mao. 2014. Peeking into Your App
without Actually Seeing It:{UI} State Inference and Novel Android Attacks. In
USENIX Security Symposium.

[12] Yushi Cheng, Xiaoyu Ji, Wenyuan Xu, Hao Pan, Zhuangdi Zhu, Chuang-Wen
You, Yi-Chao Chen, and Lili Qiu. 2019. MagAttack: Guessing Application Launch-
ing and Operation via Smartphone. In ACM Asia Conference on Computer and
Communications Security (AsiaCCS).

[13] Myeongwon Choi, Sangeun Oh, Insu Kim, and Hyosu Kim. 2022. MagSnoop:
listening to sounds induced bymagnetic field fluctuations to infermobile payment
tokens. In Proceedings of the 20th Annual International Conference on Mobile
Systems, Applications and Services.

[14] Matteo Ciman and Katarzyna Wac. 2016. Individuals’ stress assessment using
human-smartphone interaction analysis. IEEE Transactions on Affective Comput-
ing (2016), 51–65.

[15] Federal Trade Commission. 2014. Data brokers: A call for transparency and
accountability. Createspace Independent Pub, 1–101.

[16] Habiba Farrukh, Tinghan Yang, Hanwen Xu, Yuxuan Yin, HeWang, and Z Berkay
Celik. 2021. S3: Side-Channel Attack on Stylus Pencil through Sensors. ACM on
Interactive, Mobile, Wearable and Ubiquitous Technologies (2021).

[17] Surjya Ghosh, Kaustubh Hiware, Niloy Ganguly, Bivas Mitra, and Pradipta De.
2019. Emotion detection from touch interactions during text entry on smart-
phones. International Journal of Human-Computer Studies (2019).

[18] Xiaoyi Gu, Leman Akoglu, and Alessandro Rinaldo. 2019. Statistical Analysis
of Nearest Neighbor Methods for Anomaly Detection. In Advances in Neural
Information Processing Systems.

[19] Raia Hadsell, Sumit Chopra, and Yann LeCun. 2006. Dimensionality reduction by
learning an invariant mapping. In IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR’06).

[20] Jianmeng Huang, Yan Xiong, Wenchao Huang, Chen Xu, and Fuyou Miao. 2019.
SieveDroid: Intercepting Undesirable Private-Data Transmissions in Android
Applications. IEEE Systems Journal (2019).

[21] ifixit. 2021. iPhone XS and XSMax Teardown. https://www.ifixit.com/Teardown/
iPhone+XS+and+XS+Max+Teardown/113021.

[22] ifixit. 2021. Samsung S10 and S10e Teardown. https://www.ifixit.com/Teardown/
Samsung+Galaxy+S10+and+S10e+Teardown/120331.

[23] Abdul Rehman Javed, Mirza Omer Beg, Muhammad Asim, Thar Baker, and Ali Hi-
lal Al-Bayatti. 2020. AlphaLogger: Detecting motion-based side-channel attack
using smartphone keystrokes. Journal of Ambient Intelligence and Humanized
Computing (2020).

[24] Prannay Khosla, Piotr Teterwak, ChenWang, Aaron Sarna, Yonglong Tian, Phillip
Isola, Aaron Maschinot, Ce Liu, and Dilip Krishnan. 2020. Supervised contrastive
learning. Advances in Neural Information Processing Systems (2020).

[25] Konrad Kollnig, Anastasia Shuba, Max Van Kleek, Reuben Binns, and Nigel
Shadbolt. 2022. Goodbye tracking? Impact of iOS app tracking transparency and
privacy labels. ACM FAccT (2022).

[26] Moez Krichen. 2021. Anomalies detection through smartphone sensors: a review.
IEEE Sensors Journal (2021).

[27] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. 2008. Isolation forest. In IEEE
International Conference on Data Mining.

[28] Yihao Liu, Kai Huang, Xingzhe Song, Boyuan Yang, and Wei Gao. 2020.
MagHacker: eavesdropping on stylus pen writing via magnetic sensing from
commodity mobile devices. In International Conference on Mobile Systems, Appli-
cations, and Services.

[29] Anindya Maiti, Oscar Armbruster, Murtuza Jadliwala, and Jibo He. 2016.
Smartwatch-Based Keystroke Inference Attacks and Context-Aware Protection
Mechanisms. In ACM Asia Conference on Computer and Communications Security
(AsiaCCS).

[30] Seita Maruyama, Satohiro Wakabayashi, and Tatsuya Mori. 2019. Tap’n ghost:
A compilation of novel attack techniques against smartphone touchscreens. In
IEEE Symposium on Security and Privacy (IEEE S&P).

[31] Nikolay Matyunin, Yujue Wang, Tolga Arul, Kristian Kullmann, Jakub Szefer, and
Stefan Katzenbeisser. 2019. MagneticSpy: Exploiting Magnetometer in Mobile
Devices for Website and Application Fingerprinting. In ACMWorkshop on Privacy
in the Electronic Society.

[32] James Clerk Maxwell. 1865. VIII. A dynamical theory of the electromagnetic field.
Philosophical transactions of the Royal Society of London (1865).

[33] Kirk T McDonald. 2017. Magnetic field in a time-dependent capacitor. Joseph
Henry Laboratories, Princeton University, Princeton.

[34] Maryam Mehrnezhad, Ehsan Toreini, Siamak F Shahandashti, and Feng Hao.
2016. Touchsignatures: identification of user touch actions and PINs based on
mobile sensor data via javascript. Journal of Information Security and Applications
(2016).

[35] Emiliano Miluzzo, Alexander Varshavsky, Suhrid Balakrishnan, and Romit Roy
Choudhury. 2012. Tapprints: Your Finger Taps Have Fingerprints. In International
Conference on Mobile Systems, Applications, and Services (MobiSys).

[36] Sashank Narain, Amirali Sanatinia, and Guevara Noubir. 2014. Single-Stroke
Language-Agnostic Keylogging Using Stereo-Microphones and Domain Specific
Machine Learning. In ACM Conference on Security and Privacy in Wireless And
Mobile Networks.

[37] R. Ning, C. Wang, C. Xin, J. Li, and H. Wu. 2018. DeepMag: Sniffing Mobile
Apps in Magnetic Field through Deep Convolutional Neural Networks. In IEEE
International Conference on Pervasive Computing and Communications (PerCom).

[38] Emmanuel Owusu, Jun Han, Sauvik Das, Adrian Perrig, and Joy Zhang. 2012. Ac-
cessory: password inference using accelerometers on smartphones. In Workshop
on Mobile Computing Systems & Applications.

[39] Muslum Ozgur Ozmen, Xuansong Li, Andrew Chu, Z Berkay Celik, Bardh Hoxha,
and Xiangyu Zhang. 2022. Discovering IoT Physical Channel Vulnerabilities. In
ACM SIGSAC Conference on Computer and Communications Security (CCS).

[40] Hao Pan, Lanqing Yang, Honglu Li, Chuang-Wen You, Xiaoyu Ji, Yi-Chao Chen,
Zhenxian Hu, and Guangtao Xue. 2021. MagThief: Stealing private app usage
data on mobile devices via built-in magnetometer. In 2021 18th Annual IEEE
International Conference on Sensing, Communication, and Networking (SECON).

[41] Beatrice Perez, Mirco Musolesi, and Gianluca Stringhini. 2019. Fatal attraction:
identifying mobile devices through electromagnetic emissions. In Conference on
Security and Privacy in Wireless and Mobile Networks.

[42] Giuseppe Petracca, Ahmad-Atamli Reineh, Yuqiong Sun, Jens Grossklags, and
Trent Jaeger. 2017. AWare: Preventing Abuse of {Privacy-Sensitive} Sensors via
Operation Bindings. In USENIX Security Symposium.

[43] Giuseppe Petracca, Yuqiong Sun, Ahmad-Atamli Reineh, Patrick McDaniel, Jens
Grossklags, and Trent Jaeger. 2019. EnTrust: Regulating Sensor Access by Coop-
erating Programs via Delegation Graphs. In USENIX Security Symposium.

[44] John A Quinn and Masashi Sugiyama. 2014. A least-squares approach to anomaly
detection in static and sequential data. Pattern Recognition Letters (2014).

[45] L. Rabiner and B. Juang. 1986. An introduction to hidden Markov models. IEEE
ASSP Magazine (1986), 4–16.

[46] Joel Reardon, Álvaro Feal, PrimalWijesekera, Amit Elazari Bar On, Narseo Vallina-
Rodriguez, and Serge Egelman. 2019. 50 ways to leak your data: An exploration
of apps’ circumvention of the android permissions system. In USENIX Security
Symposium.

[47] C.E.T. Research. 2010. CMOSET 2010 Microsystems and Sensors Track Presentation
Slides. CMOS Emerging Technologies. https://books.google.com/books?id=
ekdkWGqw29EC

[48] I. W. Selesnick and C. S. Burrus. 1998. Generalized digital Butterworth filter
design. IEEE Transactions on Signal Processing 46, 6 (1998), 1688–1694. https:
//doi.org/10.1109/78.678493

[49] Oleg Semenov, Hossein Sarbishaei, and Manoj Sachdev. 2008. ESD Models and
Test Methods.

[50] Haoqi Shan, Boyi Zhang, Zihao Zhan, Dean Sullivan, Shuo Wang, and Yier
Jin. 2022. Invisible Finger: Practical Electromagnetic Interference Attack on
Touchscreen-based Electronic Devices. In IEEE Symposium on Security and Privacy
(IEEE S&P).

[51] Amit Kumar Sikder, Hidayet Aksu, and A Selcuk Uluagac. 2019. A context-aware
framework for detecting sensor-based threats on smart devices. IEEE Transactions
on Mobile Computing (2019).

92

https://tinyurl.com/5bv9p4sy
https://tinyurl.com/5bv9p4sy
https://www.ifixit.com/Teardown/iPhone+XS+and+XS+Max+Teardown/113021
https://www.ifixit.com/Teardown/iPhone+XS+and+XS+Max+Teardown/113021
https://www.ifixit.com/Teardown/Samsung+Galaxy+S10+and+S10e+Teardown/120331
https://www.ifixit.com/Teardown/Samsung+Galaxy+S10+and+S10e+Teardown/120331
https://books.google.com/books?id=ekdkWGqw29EC
https://books.google.com/books?id=ekdkWGqw29EC
https://doi.org/10.1109/78.678493
https://doi.org/10.1109/78.678493

iStelan: Disclosing Sensitive User Information by Mobile Magnetometer from Finger Touches Proceedings on Privacy Enhancing Technologies 2023(2)

[52] Rui Song, Yubo Song, Shang Gao, Bin Xiao, and Aiqun Hu. 2018. I know what
you type: Leaking user privacy via novel frequency-based side-channel attacks.
In IEEE Global Communications Conference (GLOBECOM).

[53] Raphael Spreitzer. 2014. Pin skimming: Exploiting the ambient-light sensor in
mobile devices. In ACM Workshop on Security and Privacy in Smartphones &
Mobile Devices. 51–62.

[54] Raphael Spreitzer, Veelasha Moonsamy, Thomas Korak, and Stefan Mangard.
2017. Systematic classification of side-channel attacks: A case study for mobile
devices. IEEE Communications Surveys & Tutorials (2017), 465–488.

[55] Statista. 2020. Apple’s smartphone market share by sales to end users from
first quarter 2016 to fourth quarter 2020. https://www.statista.com/statistics/
1168529/global-apple-market-share-2020/.

[56] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Sequence to Sequence
Learning with Neural Networks. In Advances in Neural Information Processing
Systems, Vol. 27. 3104–3112.

[57] David MJ Tax and Robert PW Duin. 2004. Support vector data description.
Machine learning (2004).

[58] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing systems (2017).

[59] Kai Wang, Richard Mitev, Chen Yan, Xiaoyu Ji, Ahmad-Reza Sadeghi, and
Wenyuan Xu. 2022. GhostTouch: Targeted Attacks on Touchscreens without
Physical Touch. In USENIX Security Symposium.

[60] Tete Xiao, Xiaolong Wang, Alexei A Efros, and Trevor Darrell. 2021. What
Should Not Be Contrastive in Contrastive Learning. In International Conference
on Learning Representations.

[61] Zhengzheng Xing, Jian Pei, and Eamonn Keogh. 2010. A brief survey on sequence
classification. ACM SIGKDD Explorations Newsletter (2010), 40–48.

[62] Zhi Xu, Kun Bai, and Sencun Zhu. 2012. Taplogger: Inferring user inputs on
smartphone touchscreens using on-board motion sensors. In Proceedings of the
fifth ACM conference on Security and Privacy in Wireless and Mobile Networks.

[63] Tuo Yu, Haiming Jin, and Klara Nahrstedt. 2016. Writinghacker: audio based
eavesdropping of handwriting via mobile devices. In ACM International Joint
Conference on Pervasive and Ubiquitous Computing.

[64] Nan Zhang, Kan Yuan, Muhammad Naveed, Xiaoyong Zhou, and XiaoFeng
Wang. 2015. Leave me alone: App-level protection against runtime information
gathering on android. In 2015 IEEE Symposium on Security and Privacy.

APPENDIX

A DETAILS OF BINARY TOUCH

EXTRACTION MODEL

Figure 1 shows the structure of the CNN-LSTM network designed
for extracting binary touch sequence from the 3-D magnetometer
data. We used an initial development dataset to select the hyperpa-
rameters. The network consists of CNN layers for extracting fea-
tures from the magnetometer data, followed by bidirectional LSTM
layers for sequence-to-sequence mapping. We use two parallel CNN
layers with filter sizes 5 and 10; each layer has 15 different filters.
The features extracted from these two layers are concatenated and
fed into a Bi-LSTM layer. Our network uses two bidirectional LSTM
layers, each with size 50, for sequence-to-sequence mapping of the
touch features. The LSTM layers are followed by a dropout layer
with 30% dropout rate to avoid overfitting. The final layer is a dense
layer with a softmax activation function. This layer outputs a binary
prediction, 1 for touch and 0 for no-touch, for each sample.

B DETAILS OF EXPERIMENTS DESIGN

In this section, we show the details of the applications used in the
different experiments. We divide the applications into 8 sets where
each set includes the applications used together in our experiments
by one participant at a time. Table 1 shows the open-source ap-
plications with the links of their source codes. It also shows the
application set that each application belongs to. In Table 2, we show
the details of the application sets used by each user.

Conv1D(5) Conv1D(10)

Concatenate

...

Concatenate

Bi-LSTM

Batch Normalization

Softmax 0,1 probes

Bi-LSTM

Dropout

Dense

Magnetometer (x, y, z)

Figure 1: Binary touch extraction network.

C EFFECT OF TOUCH ON OTHER SENSORS

We have shown that touch events have no effect on the x-axis of the
accelerometer and gyroscope signals when there is no significant
motion in the phone. Figures 2 and 3 show the y-axis signal and the
z-axis signal, respectively, of the gyroscope and accelerometer when
a touch event occurs. Consistently, all the axes of these sensors
are not affected by a touch event, unlike the magnetometer sensor,
which does not depend on motion to detect touches.

Figure 2: Showing that touch events have no effect on the

y-axis signal of the accelerometer and gyroscope.

Figure 3: Showing that touch events have no effect on the

z-axis signal of the accelerometer and gyroscope.

93

https://www.statista.com/statistics/1168529/global-apple-market-share-2020/
https://www.statista.com/statistics/1168529/global-apple-market-share-2020/

Proceedings on Privacy Enhancing Technologies 2023(2) Mohamed et al.

Table 1: Open source apps used in iStelan.

Apps Set App Type URL

Apps_A1

Board Game https://github.com/austinzheng/swift-2048
Browser https://github.com/meismyles/SwiftWebVC
Music https://github.com/analogcode/Swift-Radio-Pro
Chat https://github.com/relatedcode/Messenger3

Apps_A2

Board Game https://github.com/dave-abelson/CookieCrunch
Browser https://github.com/revblaze/WiBlaze
Music https://github.com/stellz/MusiCharts
Chat https://github.com/vitaliy-paliy/Messenger

Apps_A3

Board Game https://github.com/ghewgill/puzzles
Browser https://github.com/amerhukic/Browser
Music https://github.com/Salmik/Apple-Music-Clone
Chat https://github.com/relatedcode/Messenger

Apps_B1

Maps https://github.com/googlemaps/maps-sdk-for-ios-samples
Shooting Game https://github.com/woguan/Legend-Wings
Shopping https://github.com/openshopio/openshop.io-ios

Apps_B2

Maps https://github.com/balitax/Google-Maps-Direction
Shooting Game https://github.com/FaustosWork/Seek-N-Destroy
Shopping https://github.com/shyamPindoria/Shopping-App

Apps_B3

Maps https://github.com/balitax/Google-Maps-Direction 4

Shooting Game https://github.com/r3econ/spacequest-ios
Shopping https://github.com/kaveenabeywansa/shoppingapp

Apps_C

ToDo https://github.com/TarokhDev2020/FireTodo-for-iOS
Finance Tracking https://github.com/frozenstruct/iOS-FinanceApp

Apps_C’

Instagram https://github.com/PankajGaikar/Instagram-Clone-SwiftUI
Weather https://github.com/jonstjohn/ClimbingWeather-iPhone
Text Editor https://github.com/JKKross/redzebra

Table 2: Details of users and app sets used during iStelan’s experiments.

User Apps_A1 Apps_A2 Apps_A3 Apps_B1 Apps_B2 Apps_B3 Apps_C Apps_C’

1 ✓ ✓

2 ✓ ✓

3 ✓ ✓

4 ✓

5 ✓

6 ✓

7 ✓

8 ✓

9 ✓

10 ✓

11 ✓

12 ✓

13 ✓

14 ✓

15 ✓

16 ✓

17 ✓

18 ✓

19 ✓

20 ✓

21 ✓

22 ✓

D COMPARISON AGAINST BASELINES

We perform a per-attack stage comparison against techniques of
existing works. We additionally compare iStelan with recent side-
channel attacks that detect touch events based on accelerometer
and gyroscope motion sensors.

iStelan Binary Touch Extractor.We compare iStelan’s binary
touch extractor (Stage-1) with two other touch detection tech-
niques. First, we implemented an adapted model that uses two
LSTM layers to map the magnetometer signal to a binary touch sig-
nal, where LSTMs are commonly used for sequence mapping [56].

94

https://github.com/austinzheng/swift-2048
https://github.com/meismyles/SwiftWebVC
https://github.com/analogcode/Swift-Radio-Pro
https://github.com/relatedcode/Messenger
https://github.com/dave-abelson/CookieCrunch
https://github.com/revblaze/WiBlaze
https://github.com/stellz/MusiCharts
https://github.com/vitaliy-paliy/Messenger
https://github.com/ghewgill/puzzles
https://github.com/amerhukic/Browser
https://github.com/Salmik/Apple-Music-Clone
https://github.com/relatedcode/Messenger
https://github.com/googlemaps/maps-sdk-for-ios-samples
https://github.com/woguan/Legend-Wings
https://github.com/openshopio/openshop.io-ios
https://github.com/balitax/Google-Maps-Direction
https://github.com/FaustosWork/Seek-N-Destroy
https://github.com/shyamPindoria/Shopping-App
https://github.com/balitax/Google-Maps-Direction
https://github.com/r3econ/spacequest-ios
https://github.com/kaveenabeywansa/shoppingapp
https://github.com/TarokhDev2020/FireTodo-for-iOS
https://github.com/frozenstruct/iOS-FinanceApp
https://github.com/PankajGaikar/Instagram-Clone-SwiftUI
https://github.com/jonstjohn/ClimbingWeather-iPhone
https://github.com/JKKross/red_zebra

iStelan: Disclosing Sensitive User Information by Mobile Magnetometer from Finger Touches Proceedings on Privacy Enhancing Technologies 2023(2)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
D

F

Avg. Accuracy

iStelan
LSTM

Peak Detect.

Figure 4: Comparison of iStelan binary touch extraction

with baseline.

Second, we implemented a commonly used peak detection tech-
nique [5] on the continuousmagnetometer signal that detects signif-
icant peaks of the signal that map to a touch event. Figure 4 shows
the cumulative distribution function (CDF) of iStelan’s accuracy
compared to other techniques. We observe that iStelan’s parallel
CNN layers extracting features from the magnetometer signal im-
prove the accuracy over the LSTM-based model and outperform
the peak detection algorithm.
iStelan App Classifier. We implemented two baseline ML clas-
sifiers, Random forest (RF) and K-nearest neighbors (k-NN), to
compare their results with iStelan’s app classifier (Stage-2). While
these classifiers do not directly capture the temporal aspects of the
data, they could be used to classify sequence data using statistical
features that summarize the data [61]. To train the classifiers, we
extract statistical features from the binary touch data, including
the histogram, average, maximum and minimum duration of touch
events, and idle time. The average accuracy of the RF and k-NN
classifiers is 63% and 56%. These classifiers give low accuracy as
they fail to capture the temporal relationship between neighboring
touch samples in a given window.

We also compare iStelan against a distance-based classifier that
uses Dynamic Time Warping (DTW) as a similarity measure com-
monly used with time series data [61]. We apply this measure to the
k-NN classifier (with k = 3). The average accuracy of this classifier
is 40%. In contrast, iStelan achieves a higher accuracy of 74% using
the LSTM model for classification. The LSTM model keeps track
of the dependencies between the samples in a given sequence of
binary touch data and dynamically captures data features, resulting
in higher classification accuracy.

We also compare iStelan app classifier (Stage-2) to Magnetic-
Spy [31], which uses the effect of electromagnetic emanation of the
smartphone processor to detect the app being used. Since Magnetic-
Spy’s source code is not publicly available, we implement their app
classifier and evaluate its accuracy on data collected from our ex-
periments. MagneticSpy transforms the 3D magnetometer data into
one-dimensional data using principle component analysis (PCA),
extracts features from this data, and feeds it into a Random Forest
classifier. For this comparison, we collect 30 samples of the 3D mag-
netometer data for 4 different apps. Each sample spans a 12 secs
duration, which is the detection window size used in MagneticSpy.
We follow the same experimental setup in [31], where a user opens
each app for 12 secs and closes it without using the app while the

Table 3: Comparison with other motion sensors.

Sensor Stage 1 Stage 2 Stage 3

Accelerometer 0.82 0.20 0.78
Gyroscope 0.90 0.27 0.78

phone is placed stationary on a table. Since some of the classifier
parameters are not declared, we find the set of optimal parameters
on our dataset. The accuracy of MagneticSpy for app detection is
24%, which is close to a random guess, while their reported results
are up to 80%. This suggests that some external factors could bias
their experiments. For example, the magnetic fingerprint used to
detect apps could be affected by the ambient magnetic noise instead
of the actual electromagnetic effect from the processor. This may
also suggest that their technique does not work for iOS devices
since all of their experiments for app detection were conducted on
Android smartphones.
iStelan Touch Type Detector. We compare iStelan touch type
detector (Stage-3) to a baseline HMMmodel that uses fixed param-
eters. In our HMM model, we use continuous probability distribu-
tions for observation and transition probabilities, which depend
on state duration and idle time between states (as detailed in Sec-
tion 4.4). In the baseline model, we use fixed observation probability
for each state that depends on the frequency of the particular state
in the training dataset. Assuming the frequency of state i is fi
and the number of states in the training set is f, the observation
probability is fi/f. Similarly, the transition probability from state i
to j is fi,j/fi, where fi,j is the frequency of transitions from i to
j. This baseline model yields 67% accuracy, lower than 73% iStelan
accuracy since our HMM model not only captures the frequency of
the state transitions but also the duration between state transitions
allowing iStelan to differentiate between various touch types.

We also compare using one HMM for all app types data against
using a separate model for each app type. The result for using one
HMM model is 51% compared to 73% with separate models. This
is because the frequency of touch types, which is used to compute
the model probabilities, differs for each app type.
Detection Touch Events with Motion Sensors. We compare
iStelan with other side-channel attacks that detect touch events
based on accelerometer and gyroscope sensors.We collectedmotion
sensor data from 5 users while using the 4 different apps with the
phone lying on a table. We use this data to evaluate the three attack
stages of iStelan. We split the data into 4 users for training and 1
user for testing. The results are shown in Table 3. The accelerometer
data failed to detect the binary touches and outputs only zero (which
was the majority class 82%). While the gyroscope gives 90% for
binary detection, it yields a low accuracy close to random for the
app classification, which shows that it also outputs a majority of
zeros in binary. Both sensors output one class of “taps”, which was
78% of the data. This shows that these sensors fail to detect the
side-channel when there is no significant motion in the phone.

3An old version of the app from 2019 with a different UI.
4For the maps app, we manually edited the app from set Apps_B2 to change the UI

95

Proceedings on Privacy Enhancing Technologies 2023(2) Mohamed et al.

Idle

News

Music

Chat

Best intervals for targeted chat ads

Figure 5: An example of victim’s apps usage monitored by a

data broker app using iStelan system.

E CASE STUDIES

We discuss two case studies to show the practical impact of iStelan
side-channel attack.

E.1 GUI Confusion Attacks

In this case study, we show how iStelan can be used to launch GUI-
confusion attacks [3], which stealthily prompt the user to enter her
sensitive information. In this attack scenario, the malicious app first
infers the app type of a user with iStelan, and launches phishing
and click-jacking attacks by mimicking the GUI of other apps.

The iOS does not allow a background app to show a pop-up
screen; however, we show that the adversary can launch a GUI-
confusion attack in three different ways. In the active app switch,
the attack occurs while the user is actively using the target app (See
Figure 6a). Instead of showing a pop-up screen, the malicious app
sends a push notification at the top of the screen. This notification
contains a message that superstitiously appears to the user as a
system notification or originating from the target app. Although
the iOS displays the app name and icon on top of the notification,
the malicious app uses a generic name, less noticed by the user.
The notification also allows adding an image on the right side. In
Figure 6a, we added the target app icon, which could further lead
to user confusion. Furthermore, iOS allows apps to design a custom
notification, including a button that prompts the user to click. If
the user clicks on the notification, an app switch occurs to the
malicious app. The malicious app displays a view that mimics the
target app with a prompt to enter sensitive information such as
login credentials or credit card information.

The passive app switch attack, as shown in Figure 6b, occurs
when the malicious app detects the target app type (after being
used by the user for a sufficient time interval), changes its UI to be
similar to the target app in the background, and waits in idle state.
The malicious app stays idle in the background. While the user
is switching between apps looking for the target app, she could
inadvertently switch to the malicious app.

Lastly, in full-screen attack passive attack, when the user uses
the malicious app, the app goes to the full-screen mode and creates
a fake home screen with standard actions. This gives the user the
impression that she interacts with the OS while the malicious app
receives her inputs.

In the previous attacks, we assume that an adversary correctly
guesses the exact app the user is using. Yet, even with only know-
ing the app type, the attacker can conduct GUI-confusion attacks.
For example, if iStelan identifies the user uses a chatting app, the
malicious app could send a notification with a one-week free inter-
national calls that requires entering payment information. If the
user clicks the notification to subscribe, an app switch occurs, and
the malicious app shows a generic payment web view that would
be perceived by the user as if originating from the target app.

(a) Active switch (b) Passive switch

Figure 6: Examples ofGUI confusion attackswithMessenger

as target app and the malicious app named “ALT".

E.2 Targeted Ads Attacks

We show another case study where the data inferred by iStelan
could also be valuable for companies aiming to advertise their web
or mobile apps to interested users. These companies usually buy
user data from data brokers, where they can analyze the behavior
of users and target ads to specific categories of users at the best
time intervals [15].

We construct an attack in which an attacker leverages iStelan
to act as a data broker. While the victim user naturally uses her
phone during a time frame, the data broker app collects magnetic
sensor data in the background. iStelan infers the type of apps a
user has used during this time frame and constructs a timeline of
apps usage along with idle time. Figure 5 illustrates an example of
the victim’s apps usage timeline as constructed by iStelan during a
three hours interval. Assuming a web app or another app installed
on the victim’s device sends their new chatting app ads. Therefore,
they buy this timeline data from the data broker to extract infor-
mation about which users use chatting apps the most and at which
time of the day to target the ads.

96

	Abstract
	1 Introduction
	2 iStelan Insights
	2.1 Structure of Touch Screens
	2.2 Effect of Touch Events on Magnetometer
	2.3 Comparison with Prior Work
	2.4 Threat Model

	3 Approach Overview
	4 iStelan Design
	4.1 Sensor Data Extraction and Preprocessing
	4.2 Binary Touch Extraction
	4.3 Application Classifier
	4.4 Touch Event Type Detector

	5 Evaluation
	5.1 Effectiveness
	5.2 Robustness of Application Classifier
	5.3 Environmental Factors

	6 Limitations and Discussion
	6.1 Countermeasures
	6.2 Improving iStelan Accuracy
	6.3 Limitations

	7 Related work
	8 Conclusions
	Acknowledgments
	References
	A Details of Binary Touch Extraction Model
	B Details of Experiments Design
	C Effect of Touch on other Sensors
	D Comparison against Baselines
	E Case Studies
	E.1 GUI Confusion Attacks
	E.2 Targeted Ads Attacks

