
ERACAN: Defending Against an Emerging CAN Threat Model
Zhaozhou Tang

Georgia Institute of Technology
Atlanta, USA

ztang306@gatech.edu

Khaled Serag
Qatar Computing Research Institute

Doha, Qatar
kseragalsharif@hbku.edu.qa

Saman Zonouz
Georgia Institute of Technology

Atlanta, USA
saman.zonouz@gatech.edu

Z. Berkay Celik
Purdue University
West Lafayette, USA
zcelik@purdue.edu

Dongyan Xu
Purdue University
West Lafayette, USA
dxu@purdue.edu

Raheem Beyah
Georgia Institute of Technology

Atlanta, USA
rbeyah@coe.gatech.edu

Abstract

The Controller Area Network (CAN) is a pivotal communication
protocol extensively utilized in vehicles, aircraft, factories, and di-
verse cyber-physical systems (CPSs). The extensive CAN security
literature resulting from decades of wide usage may create an im-
pression of thorough scrutiny. However, a closer look reveals its
reliance on a specific threat model with a limited range of abilities.
Notably, recent works show that this model is outdated and that
a more potent and versatile model could soon become the norm,
prompting the need for a new defense paradigm. Unfortunately, the
security impact of this emerging model on CAN systems has not
received sufficient attention, and the defense systems addressing it
are almost nonexistent. In this paper, we introduce ERACAN, the
first comprehensive defense system against this new threat model.
We first begin with a threat analysis to ensure that ERACAN com-
prehensively understands this model’s capabilities, evasion tactics,
and propensity to enable new attacks or enhance existing ones.
ERACAN offers versatile protection against this spectrum of threats,
providing attack detection, classification, and optional prevention
abilities. We implement and evaluate ERACAN on a testbed and a
real vehicle’s CAN bus to demonstrate its low latency, real-time
operation, and protective capabilities. ERACAN achieves detection
rates of 100% and 99.7%+ for all attacks launched by the conven-
tional and the enhanced threat models, respectively.

CCS Concepts

• Security and privacy→ Network security.

Keywords

Automotive Security; Controller Area Network; Intrusion Detection

ACM Reference Format:

Zhaozhou Tang, Khaled Serag, Saman Zonouz, Z. Berkay Celik, Dongyan
Xu, and Raheem Beyah. 2024. ERACAN: Defending Against an Emerging
CAN Threat Model. In Proceedings of the 2024 ACM SIGSAC Conference on

Computer and Communications Security (CCS ’24), October 14–18, 2024, Salt

Lake City, UT, USA. ACM, New York, NY, USA, 15 pages. https://doi.org/10.
1145/3658644.3690267

This work is licensed under a Creative Commons Attribution-
NonCommercial International 4.0 License.

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0636-3/24/10
https://doi.org/10.1145/3658644.3690267

1 Introduction

Since its introduction in the 1980s, the Controller Area Network
(CAN) has solidified its position as the primary in-vehicle net-
work and extended its influence to diverse cyber-physical systems
(CPSs), allowing hundreds of electronic control units (ECUs), which
govern various sensors, actuators, and CPS control functions, to
communicate. Decades of widespread adoption have spurred sub-
stantial security research. Initially, accessing the bus was believed
viable only through physical access, typically granted to autho-
rized users. However, increased ECU connectivity challenged this
assumption, allowing malicious attackers to exploit wireless chan-
nels such as WiFi, cellular, and Bluetooth to remotely compromise
ECUs [8, 40, 45, 46, 68]. This shift ushered in a once-deemed unre-
alistic threat model: remote attackers.

From an OSI standpoint, the standard outlines the communica-
tion rules of the physical and data link layers for a broadcast-based
bus and leaves the upper layers open to allow flexibility for various
use cases. Typical ECUs connect to the bus through a CAN protocol
controller and a transceiver, which enforce the specification rules
for the data link and physical layers, respectively. The existing lit-
erature assumed that remote attackers could control the ECU but
not the controller or transceiver, effectively leaving the data link
and physical layers intact. This meant that they could only read or
write entire messages assembled by an unbroken CAN controller.
With these two capabilities, many works have shown that attackers
could launch a plethora of attacks, including fake message injec-
tion, masquerading, flooding, error injection, and suspending other
ECUs [2, 4, 8, 9, 33, 39, 40, 45, 46, 58, 59, 68, 69].

As a response, researchers proposed several defense approaches.
Some explored protecting against certain attack types (e.g., mas-
querade) using techniques such as MACs or secret numbers to
provide source authentication. However, due to limitations in-
cluding message length, busload, key management, and the lim-
ited processing powers of most ECUs, intrusion detection systems
(IDSs) [10, 13, 19, 30–32, 52, 56, 57, 61, 72] gained more traction.
These approaches, which contain a super-node handling the bulk
of the security work, are more suitable for CAN systems due to
their performance-friendliness. The node monitors traffic and de-
tects anomalies leveraging features, including message frequency,
payload, timing, and physical signal characteristics.

Despite the ostensible maturity of CAN security research, recent
developments suggest otherwise. While the literature assumes that

https://doi.org/10.1145/3658644.3690267
https://doi.org/10.1145/3658644.3690267
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1145/3658644.3690267


CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Zhaozhou Tang, et al.

remote attackers cannot control the link layer, recent works indi-
cate that this assumption may be obsolete. Techniques including
manipulating peripheral clock gating or remapping transceivers’
IO ports allow attackers substantial link layer control on many
ECUs [6, 14, 34, 63]. Unlike the Conventional Remote Attacker
Model (CRAM), where only two basic abilities–sending and receiv-
ing entire messages through an intact controller–enabled various
attacks, the Enhanced Remote Attacker Model (ERAM) possesses ex-
pansive capabilities, including injecting pulses, incomplete frames,
and edge control. These boosted abilities introduce more advanced
attacks whose security implications are not fully investigated. Re-
search demonstrates that the ERAM abilities may improve existing
attacks [34, 43, 48], enable new attacks [64, 73], and circumvent
current defense systems. Surprisingly, no defense systems address-
ing this threat model are proposed, and a comprehensive analysis
of its security impact remains absent.

In response to this critical gap, we introduce ERACAN, the first
comprehensive defense system against ERAM attackers. ERACAN
provides detection for all ERAM and CRAM attacks, with optional
prevention where feasible. As ERAM spans various attacks, ERACAN
also provides attack classification, making clear the specific type of
attack it is reacting against. Defending against ERAM poses major
challenges. C1: First, a thorough analysis needs to identify the full
range of ERAM abilities, attacks, and security implications, which
is absent from prior works. C2: Second, confronting an attacker
able to manipulate low-level events requires monitoring features
spanning both the physical and link layers. A complete feature set
covering all ERAM attacks is difficult to find due to the extensive
ERAM capabilities. Existing defenses focus on single feature cate-
gories, hindering the detection of most ERAM attacks. For example,
defenses that identify message senders and check if they are legit-
imate using voltage features cannot detect messages transmitted
by a legitimate sender using ERAM techniques to achieve malicious
goals [64, 73]. C3: Finally, detection must ensure reliability and
abide by deadlines for effective incident response (e.g., destroying
malicious messages before they are received). Crafting a monitoring
strategy satisfying both goals presents another significant obstacle.
Current sender identification approaches cannot detect attacks in-
jecting short pulses. Similarly, using the GPIO to surveil the link
layer is unreliable and computationally expensive.

We first address C1 by thoroughly analyzing the ERAM model
to understand its capabilities and security impacts through litera-
ture review and extrapolation. We then identify the needed feature
set including bit timing, voltage, and link layer events to cover all
ERAM attacks and addressC2. Finally, to monitor these features and
meet the requirements of C3, ERACAN uses a dedicated monitor
node adopting a dual-faceted delegation, and smart checking strat-
egy. It deploys a customized FPGA controller (ERACAN controller)
for autonomous link layer surveillance to ensure reliability, cus-
tomizability, and parallel execution. For the physical layer, ERACAN
deviates from traditional sender identification. It mainly uses fea-
tures to model valid message properties with simple equations and
performs checks selectively based on attack scenarios. This reduces
complexity and simplifies processing to meet deadlines. ERACAN
is cost-efficient and requires minimal hardware changes, merely

S
O
F

ID
11b

R
T
R

Control
6b

Data
0-64b

CRC
16b

ACK
2b

EOF
7b

Figure 1: Format of a standard CAN data frame.

attaching a single monitor node. To help the research community
build on ERACAN, we open source our FPGA design.1

For inclusivity, we evaluate the performance and security of
ERACAN on a testbed and a real vehicle’s CAN bus. ERACAN achieves
100% detection for CRAM attacks, 99.7%-100% detection for ERAM
attacks, and an attack classification accuracy of 98.8%-100%. Overall,
we make the following contributions:
• We introduce ERACAN, the first defense system against the ERAM
model, offering real-time detection, classification, and optional
prevention abilities for CRAM as well as ERAM attacks.
• We systematically threat-analyze ERAM to understand its features,
defense evasion tactics, and the attacks it enables or improves,
as a basis for ERACAN and future ERAM defenses to build on.
• We propose a new autonomous surveillance mechanism for in-
tricate link layer events by delegating it to a configurable FPGA
controller (ERACAN controller) to ensure parallel execution and
real-time performance. Additionally, we introduce a smart check-

ing approach for physical layer features. Finally, we provide open
access to our FPGA controller design to support further research.
• We offer a performance analysis as well as a security analysis of

ERACAN against various ERAM attacks and evasion tactics.
• We demonstrate ERACAN’s feasibility, real-time abilities, perfor-
mance, and protective capabilities by evaluating it on a testbed
and a real vehicle’s CAN bus and achieve excellent results.

2 Background

2.1 CAN Basics

Bit Encoding. CAN uses differential voltage between CANH and
CANL to encode bits. A positive (dominant) voltage denotes 0 and
zero (recessive) voltage denotes 1. When two nodes send a 1 and 0
concurrently, all nodes read a 0. If five identical bits are transmitted
consecutively, a stuff bit of the opposite value is inserted.
Frame Format. Fig. 1 shows the various message fields. The ID
determines the priority of a message, with lower IDs indicating a
higher priority. When two nodes start transmission at the same
time, they perform arbitration. Each node sends one bit at a time.
The first node to transmit a 1 yields. A message terminates with the
End of Frame (EOF) field (seven 1s). The next consecutive message
is separated by at least three additional Inter Frame Space bits (IFS).
Error Handling. The CAN standard defines five kinds of errors:
bit, stuff, form, CRC, and acknowledgement errors. Upon detecting
an error, nodes signal with an error frame. A CRC error is signaled
after the ACK field. Other errors are signaled at the next bit after
where they are detected.
Error States. Every node keeps a Transmit Error Counter (TEC)
and a Receive Error Counter (REC) to keep track of errors encoun-
tered during transmission or reception, respectively. If TEC or REC

1https://tinyurl.com/5n77avxu



ERACAN: Defending Against an Emerging CAN Threat Model CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

exceeds 127, nodes enter the error-passive state, where stricter er-
ror signaling and transmission rules are enforced. If TEC or REC
exceeds 255, they enter the bus-off state and stop communicating.
Sampling. CAN controllers divide a single bit into four segments of
configurable durations: synchronization, propagation delay segment,
and the phase buffer 1 and 2 segments. Controllers interpret the bit
value at the sample point at the end of the phase buffer 1 segment.
Synchronization. A node expects 1→0 edges from other nodes
within the the synchronization segment. If it observes the edge
outside the synchronization segment, it resynchronizes either by
lengthening phase buffer 1 or shortening phase buffer 2 segment.

2.2 Conventional Remote Attacker Model

2.2.1 Basic Abilities. CRAM attackers possess three basic abilities:
Valid Message Reception. They can read data or remote frames
after they are fully received and validated by the CAN controller.
Valid Message Transmission. They can only transmit valid data
or remote frames using the CAN controller and need to abide by
all protocol rules, such as arbitration.
Simultaneous Transmission. This is a crucial technique to inject
collisions. The attacker transmits a message with the same ID as the
victim at the same time but with a different payload, so they both
win arbitration and gain bus access. To synchronize the messages,
the attacker needs to predict when the victim’s message arrives,
inject one or more preceded messages with a higher-priority ID
slightly earlier, and then transmit a message with the target ID.

2.2.2 Possible Attacks. Two primary attack categories are possible:
Masquerading Attacks. Since CAN does not provide authentica-
tion, a CRAM attacker can masquerade as other ECUs by transmit-
ting messages under their IDs to forge or replay messages and alter
system functions the victim is in charge of.
Error-Handling Attacks. With simultaneous transmission, attack-
ers can inject errors in a victim’s message to exploit CAN error
handling rules. They can destroy messages, push victims to the error-
passive state to map the network [58], or push them to the bus-off
state to achieve targeted DoS [9]. They can also inject collisions to
corrupt messages’ physical signals, poison the retraining process of

physical signal based defenses, and render them ineffective [4].

3 Related Work

Timing Based Approaches. These approaches use message tim-
ing features such as clock skews and message intervals to detect
anomalies [11, 53, 61, 72]. Despite being lightweight, some of them
may not extend their protection to non-periodic messages. Evasion
tactics for some approaches already exist under CRAM [54] and new
ERAM tactics further undermine their security (Sec. 4.3).
Payload Inspection Approaches. These approaches inspect mes-
sage payloads, extract statistical features, and use machine learning
to check their plausibility [1, 38, 67]. Although they are good at
detecting injection attacks, somemay only detect anomalies consist-
ing of message flows and could allow low-level attacks to pass unno-
ticed. Under CRAM, researchers have demonstrated evasion attacks
that reduce the performance of some of these systems. [7]. More-
over, ERAM presents new evasion tactics against them (Sec. 4.3).
Cryptographic Approaches. Some researchers proposed provid-
ing sender and content authenticity using MACs [21, 26, 49, 50, 66],

CAN ControllerGPIO SPI

TX

CAN Bus

CAN Transceiver

… …
Data Clock

RX

ECU Peripherals Select

CPU

Figure 2: Typical Architecture of an ECU.

or sender authenticity only using secret tokens embedded in mes-
sages [25, 27, 70]. Researchers have made progress in making these
approaches more lightweight, but these improvements are still not
enough to enable wide adoption.
Secret Delay Approaches. These approaches embed authentica-
tion information in secret delays between messages instead of their
payloads [22, 23, 57, 71]. Among them, ZBCAN additionally detects
and prevents error-handling attacks. However, it does not protect
against ERAM attackers (Sec. 4.3). Furthermore, approaches using
secret delays require changing message schedules and could lead
to bus load increases and priority inversions.
Physical Signal Approaches. These approaches identify mes-
sage senders with ECUs’ physical signal features, such as volt-
age [10, 12, 13, 19, 31, 32], bit timing [47, 56, 74], and time dif-
ference of arrival [44, 52, 55]. They offer good security against
masquerading attacks but do not detect other attacks, except for
VoltageIDS [13] which detects some error-handling attacks. More-
over, researchers have demonstrated poisoning attacks against some
of these defenses [4]. Finally, they only consider CRAM attacks and
are vulnerable under ERAM in several ways (Sec. 4.3).
Hardware Approaches. Some defenses use gateways or relays
to isolate attackers [24, 29]. Although very effective against some
attacks, they require significant hardware modifications and are
too expensive to be adopted for all nodes on the bus.

4 The ERAM Threat Model

Fig. 2 shows the architecture of a typical ECU with several periph-
erals to facilitate various functions. During normal operation, it
connects to the bus through a CAN controller and a transceiver. Pre-
viously, it was assumed that attackers could not change the path to
the bus or influence the controller operation in any way. However,
recent work [34] showed that, by manipulating peripheral clock
gating, the attacker could partially control the controller. Another
recent work [14] showed that, by re-mapping the IO ports of the
transceiver, they could completely disconnect the controller and
instead connect it to other peripherals, such as the GPIO, SPI, UART,
or others depending on the ECU’s architecture.

In this paper, we assume a strong Enhanced Remote Attacker
Model (ERAM). We assume the attacker can connect the transceiver
to any other peripheral of the ECU and the ECU has all the com-
monly used peripherals. This means the attacker has full control
over the data link layer and the layers above it, but still abides by



CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Zhaozhou Tang, et al.

the physical layer’s rules as it uses the transceiver. In this section,
we first identify ERAM attackers’ capabilities and the features they
unlock. Then, by thoroughly reviewing and extrapolating existing
literature on link layer attacks [14, 43, 62], we analyze their secu-
rity impacts on aspects such as enabling new attacks, improving
existing ones, and circumventing existing defenses.

4.1 Main Capabilities and Features

In addition to all the capabilities of the conventional CRAM model,
ERAM possesses more sophisticated ones, each unlocking various
features as discussed below.
Ubiquitous Link Layer Visibility. In CRAM, only valid frames
received, assembled, and checked by the controller are visible to
the attacker. However, an ERAM attacker can read the bus level
through the transceiver at any point in time. This unlocks several
previously unattainable features, such as:
Real-time bit inspection: ERAM attackers could read all message
bits in real-time, without waiting for the controller to assemble
them first. This includes the ID [14], payload, or the various pro-
tocol fields, such as the CRC. This ability has several uses, such as
attacking messages with specific IDs or content.
Timing bus events: The attacker can accurately time various bus
events, such as the start of a frame, the transmission of a particular
ID [14] or field value, and many others. This is crucial for accurate
attack timing, such as injecting signals at a specific message field.
Atypical event visibility: ERAM visibility spans all events, including
valid but rare ones, such as error or overload frames, and invalid
ones, such as pulses, incomplete, and invalid data frames. This
ability has various uses, such as helping the attacker track the
errors a specific ECU encounters.
Omnipotent Link LayerWrite-Ability. CRAM attackers can only
inject entire frames, assembled and checked by the CAN controller
and abide by all bus access rules, such as arbitration. Contrastingly,
ERAM attackers can directly inject signals onto the bus at any time.
The nature of the signals could vary from pulses to complete frames.
This unlocks several previously unattainable features, such as:
Arbitrary frame injection: ERAM attackers could inject bits one-by-
one to form any complete frame at any time. Beyond valid data
frames, this could vary from overload [64] and error frames [14, 34,
43, 48], to invalid frames, such as frames with a wrong CRC.
Arbitrary non-frame injection: ERAM attackers could inject non-
frames, such as pulses, bits [43], and partial frames [17, 29, 62]. This
feature is significant as it allows the attacker to flip bits of valid
frames, overwrite frames, or cause synchronization problems.
Arbitrary edge and width control: ERAM attackers can control the
edges or widths of their injected signals [43, 64]. This could allow
attackers to force nodes to resynchronize or exploit sample point
differences among different CAN controllers.
Link Layer Rule Non-Compliance. The attacker’s control over
the link layer extends to all its rules, such as arbitration, error states,
and acknowledgment. The attacker may completely ignore the rules
or apply their own rules. For example, they may continue sending a
frame after being interrupted by an error frame, not transition to the
error-passive or bus-off states, or acknowledge their own frames.
This could help them in many scenarios, such as circumventing
defense systems that rely on link layer rules (Sec. 4.3).

Victim ID True Data Passive Error Frame

Attacker Fake Data CRC

True Data

ID True Data Passive Error FrameCAN Bus Fake Data CRC

Figure 3: Frame hijacking attack.

4.2 ERAM Attacks

4.2.1 New Attacks. Besides all CRAM attacks (Sec. 2.2.2), ERAM
attackers can launch many completely new attacks.
Frame Hijacking. As demonstrated by [17, 62], ERAM attackers
could push a victim to the error-passive state and hijack frames
mid-transmission. As shown in Fig. 3, the attacker flips a recessive
bit into a dominant one and then continues transmission including
a valid CRC. The victim detects a bit error and sends a passive error
flag consisting of six 1s. However, it is overwritten by the attacker’s
payload and not visible to other nodes. Other nodes receive the
attacker’s forged data and a valid CRC and treat it as a valid message
from the victim. This could be very useful if the beginning portion
of the message is used for authentication or anomaly detection.
Double Receive. As shown in [64], an ERAM attacker could flip
the last bit of EOF from 1 to 0. The receiver treats the message as
valid as it contains no errors up to the second-to-last bit of EOF [20].
However, the sender detects a bit error and retransmits the message,
causing the receiver to get the samemessage twice. This could cause
problems in several scenarios. For example, the receiver may act
on the same message twice when messages do not use sequence
numbers, or nodes may lose synchronization when they need to
agree on message counters.
Freeze Doom Loop. As proposed by [64], an ERAM attacker can
send an overload frame at the first bit of IFS to falsely indicate
that a node needs more time to process the received message. This
cannot be done under CRAM because CAN controllers cannot be
programmed by software to generate overload frames. On receiving
an overload frame, other nodes also send overload frames and bus
traffic is delayed. This could repeat indefinitely without increasing
any ECUs’ error counters, making it difficult for some IDSs to detect.
Unorthodox Frames. Based on the arbitrary frame injection capa-
bility, we find that the attacker could forge and inject frames that
do not fully comply with the CAN standard, such as a message with
a data field longer than 8 bytes, or a remote frame with data. This
could achieve various purposes such as causing errors or discover-
ing implementation mismatches between different CAN controllers
of insufficiently defined parts of the standard.
Arbitration Denial. By flipping a 1 to a 0 in the ID field of a
message in [14, 29, 43], the victim loses arbitration and the message
is delayed, potentially missing its deadline. The attacker could
perform this repeatedly to prevent the victim from ever gaining bus
access. To cover his tracks, the attacker can continue transmitting
a frame after winning arbitration so other nodes see a valid data
frame and do not detect errors.
Synchronization Disruption.When a victim transmits a 1, the at-
tacker can inject a 0 pulse after the synchronization segment [14, 43].
The sender and receivers see a 1→0 edge outside synchronization
segments and resynchronize (Sec. 2.1). Depending on their bit time



ERACAN: Defending Against an Emerging CAN Threat Model CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

1

0
Receiver2 
sample point

Receiver1 
sample point

(a) Janus frame.

Receiver 
sample point

1

0

Sender 
sample point

(b) Counterfeit frame.

Figure 4: Attacks exploiting sample point differences.

settings, they may adjust their bit durations differently, lose syn-
chronization, and experience communication errors.
Janus Frames. In Fig. 4a, when two nodes have different sample
points and an attacker sends a bit with a 1→0 or 0→1 transitions
between their sample points, they read different values. The attacker
can send a carefully chosen frame with such transitions so two
nodes receive different contents and do not detect errors [64, 73].
Counterfeit Frames. Extrapolating the Janus frame idea, we de-
duce and verify that an attacker can flip bits from 1 to 0 in a sender’s
message without causing errors. For example in Fig. 4b, when the
sender sends a 1, the attacker injects a 0 pulse after the sender’s
sample point that lasts after the receiver’s sample point. The sender
samples a 1 and does not detect bit errors, while the receiver sam-
ples a 0. The attacker can flip bits in both the data and CRC fields to
modify a message received by the receiver without causing errors.

4.2.2 Improved Attacks. ERAM abilities can improve certain CRAM
attacks and provide more stealth, reliability, and flexibility.
ERAM Error Injection. While CRAM attackers can inject errors
by simultaneous transmission which usually involves injecting
preceded messages to synchronize two messages (Sec. 2.2.1), an
ERAM attacker could inject an error directly, making it stealthier
and more deterministic [14, 34, 43, 48]. Further, while CRAM has
limited control over the location or type of the error, ERAM attackers
have substantial control over both by injecting bits or error frames
at any location of their choosing in a victim message.
Physical Fingerprint Corruption. Building on voltage corrup-
tion attacks proposed by Bhatia et al. [4], we conceive an improved
physical fingerprint corruption attack. Bhatia’s technique involves
causing several errors, transitioning a node into the error-passive
state, cooperating between two attacking ECUs, and other require-
ments. In the improved attack, however, ERAM attackers directly
inject pulses that overlap with parts of a victim’s message to corrupt
their physical characteristics without any such needs, making it
stealthier and more convenient.

4.3 Impacts on Existing Defenses

On Physical Signal Based Approaches. ERAM abilities are prob-
lematic to systems using physical signals to identify attackers or
detect intrusions. For example, many approaches use physical sig-
nal features from a specific part of the message to check authentic-
ity [12, 32, 55, 56]. ERAM attackers could manipulate these systems
in several ways. For example, attackers could leave such parts of the
message intact, but hijack the frame after they elapse. For systems
that take several samples all over the message with online updates
[10], they only detect spoofing of entire messages and struggle with
ERAM attacks that only require injecting short pulses, as [14] points
out. Moreover, the attacker may gradually corrupt or hijack small

parts of the frame to change the system’s definition of a valid signal.
Transmitting messages with GPIO, the attacker may also directly
control bit timing of his messages to emulate the characteristics of
other ECUs and evade bit timing based approaches [47, 56, 74].
On Error Handling Defenses. Some defenses attempt to prevent
CRAM error-handling attacks by making it difficult for the attacker
to transmit a message simultaneously with the victim. This is done
by randomizing the message’s transmission time or parts of its ID.
ERAM’s ability to time attacks accurately and inject errors arbitrarily
bypasses any of these defenses as it could launch the attack once
the message or the fixed part of its ID appears.
On Cryptographic Approaches. Some cryptographic approaches
embed secret tokens in fields such as the ID to provide sender
authentication [25, 70]. They are not secure under ERAM because
attackers can wait after these tokens are transmitted and then hi-
jack the frame. Further, approaches that keep message or freshness
counters between senders and receivers [26, 50, 66] may be vulner-
able to the double receive attack (Sec. 4.2.1) as it could cause the
legitimate transmitter to send a message with the same counter
twice. Finally, for content authentication defenses that use a cen-
tral authenticator [35], Janus and counterfeit frame attacks (Sec.
4.2.1) could be used to falsify a legitimate frame to keep it looking
valid for the authenticator but containing false data for some or all
receivers, depending on their sample points.
On Timing Based Approaches. Defenses using message timings
to assess authenticity, such as natural intervals [53, 61, 72] or secret
delays [57, 71] between messages, are vulnerable under ERAM. At-
tackers can hijack or counterfeit messages to modify their contents
without changing their transmission time, evading such defense.
OnPayload InspectionApproaches. Since these approaches only
process application layer information, they cannot detect low-level
ERAM attacks, as noted by [14]. Moreover, they may be vulnerable
to Janus and counterfeit frames posturing a benign message to them
while containing malicious data for other receivers.
On Using Link Layer Rules for Defense. Some approaches
use certain link layer rules for defense purposes. For example, re-
searchers suggest identifying a message’s sender by pushing it to
the error passive state [58], which some defenses use to identify
attackers [60]. Other papers suggest pushing attacker nodes to the
bus-off state [57]. Due to the non-compliance capability (Sec. 4.1),
none of these techniques could be used against ERAM attackers.
Notably, CopyCAN [37] calculates ECUs’ error counters by moni-
toring the link layer and reading error frames. Although it could
limit some ERAM attacks that cause errors (e.g., frame hijacking), it
could not detect attacks that do not or distinguish genuine errors.

5 ERACAN Design

5.1 Architecture and Operation Overview

ERACAN consists of a single node that connects to the bus and com-
prehensively monitors the data link and physical layers. It extracts
specific features to detect and classify all ERAM attacks (Sec. 4.2).
For certain attack types, ERACAN offers an attack prevention option
to be enabled or disabled by the system administrator. To address
performance challenges of such ubiquitous monitoring, ERACAN
adopts a dual approach of delegation and smart checking. It delegates
all link layer surveillance to a customized CAN controller (ERACAN



CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Zhaozhou Tang, et al.

ERACAN 
Controller

ADC

TDC
Wait for
Interrupt

Poll Timestamps 
Extract Bit Timing 

Features

Attack Classification & 
Optional Prevention Stop TDC 

& ADC

Start TDC 
& ADC

ID IRQ

Anomaly

Monitor Software

Voltage

Msg has error AttackInjected 
Error

No 
Attack

Legitimate Error

CAN Bus

ID, 
Anomaly

Monitor
Hardware Msg Edge 

Timestamp
1

2 3

6

ECU

ECU
Asymmetry Check

Pulse Injection Check

Check Injected Error

Check Msg Validity & Authenticity
Authenticity, GPIO, Edge Count & 

Asymmetry Checks

Update Bit 
Timing 
Model

4 5

Figure 5: ERACAN monitor node architecture, workflow, and deployment on a CAN bus.

controller). For the physical layer, it uses a time-to-digital converter
(TDC) to monitor time events, and an analog-to-digital converter
(ADC) to monitor voltage levels. However, they are monitored us-
ing smart checking and only checked selectively based on attack
scenarios. This greatly reduces the processing overhead. Below, we
further describe these components and smart checking.
ERACAN Controller. This customized CAN controller can be con-
figured to autonomously monitor certain link layer events. It stores
information in registers and interrupts the software once events
occur. The software then queries and clears them after each inter-
rupt. Moreover, if attack prevention is enabled, ERACAN controller
can inject errors to destroy malicious frames.
TDC. ERACAN uses this to measure the timestamps of 1→0 and
0→1 edges of the signal from the transceiver. They are used to
extract and model two features: bit-period and asymmetry. We
discuss their definition, extraction, and modeling in Sec. 5.2.
ADC. ERACAN uses this to measure the differential voltage levels
of the bus, which it uses to check for attackers’ error injections.
Smart Checking Workflow. Fig. 5 shows ERACAN’s workflow.
During operation, ERACAN controller continuously watches for sus-
picious link layer events and reads the ID of messages that appear
on the bus. TDC and ADC measurements are started only when a
message’s ID field completes transmission. Initially, only TDC mea-
surements are used to extract the frame’s bit period and asymmetry

in real-time. When its ACK field starts, ERACAN checks the mes-
sage’s bit period and asymmetry for validity and authenticity. If all
checks pass, ERACAN updates a model for these features. However,
if a message is interrupted with an error, ERACAN checks if the error
is legitimate or injected by the attacker. ERACAN checks bit timing
first, and if no anomalies are found, only then does it process and
check ADC measurements. When an attack is detected, ERACAN
performs attack classification, and prevention if it is optionally
enabled. We explain these procedures in detail in this section.

5.2 Feature Extraction and Modeling Details

Bit Period: Equation 1 calculates an ECU’s bit period 𝑇 from the
time 𝑡↓↓ between consecutive 1→0 edges with 𝑛↓↓ bits in between:

𝑇 =
𝑡↓↓
𝑛↓↓

(1)

Asymmetry: Equation 2 computes an ECU’s asymmetry 𝐴 using
the time 𝑡↓↑ and the number of bits 𝑛↓↑ between a 1→0 edge and
the next 0→1 edge and its bit period 𝑇 :

𝐴 = 𝑡↓↑ − 𝑛↓↑𝑇 (2)

Asymmetry is an ECU’s unique physical fingerprint and depends
on its transceiver switching characteristics [28, 56], signal reflec-
tion [36, 65], and load between the ECU and measuring unit [28, 56].
Modeling Legitimate Bit Timing. We compute bit period and
asymmetry measurements using all edges between a message’s
ID and ACK fields. We model each ECU’s expected bit period and
asymmetry using normal distributions 𝑁 (𝜇𝑇 , 𝜎2

𝑇
) and 𝑁 (𝜇𝐴, 𝜎2

𝐴
).

Bit Timing Model Recreation. Bit timing models are recreated
when a CAN bus is turned on after a period of inactivity. ECUs
send calibration messages and ERACAN uses them to compute their
distribution parameters and bit period variance within a message.
Securing Model Recreation. ERACAN needs a cryptographic
scheme that guarantees source authenticity and obfuscates the
payload so attackers cannot predict it. Any scheme meeting these
requirements can be used. In Appendix A, we explain an example
lightweight scheme adopted from [57] for this step.
Bit Timing Model Online Updates. If a message contains no
errors and fails no legitimacy checks, ERACAN uses it to perform
online updates to account for feature drift due to environmental
conditions. With each new measurement 𝑥 , ERACAN updates distri-
bution parameters using Equations 3 and 4:

𝜇𝑛 = 𝑤𝜇𝑛−1 + (1 −𝑤)𝑥 (3)

𝜎2
𝑛 = 𝑤 [𝜎2

𝑛−1 + (1 −𝑤) (𝑥 − 𝜇𝑛−1)2] (4)

A smaller 𝑤 gives new measurements a higher weight and helps
the model adapt to changes faster. For large environmental varia-
tions or low-frequency messages whose bit timing can accumulate
substantial changes between messages,𝑤 should be reduced.
Voltage Levels. Unlike sender identification approaches, ERACAN
does not use voltage to achieve fine distinctions between ECUs, but
only to distinguish between normal voltage levels and anomalies
caused by attacks. It uses a single feature in two scenarios: voltage
level variance to check for attack when a message contains errors
(Sec. 5.3), and mean voltage level to confirm if an attack is launched
by simultaneous transmission (Sec. 5.4). Since such distinctions
are far more significant than differences among ECUs or under
environmental variations, fixed detection thresholds enable reliable
performance (Sec. 8). Thus, ERACANmeasures voltage levels once in
a secure setting (e.g., during manufacturing). It records the expected
mean and variance of ECUs’ stable dominant voltage levels and
uses these to set fixed detection thresholds.
Link Layer Information. We configure ERACAN controller to
report the following information: message IDs after their ID fields
terminate, the edge count between ID and ACK fields, errors and



ERACAN: Defending Against an Emerging CAN Threat Model CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Algorithm 1Message Authenticity Check

Input: Mean asymmetry in CRC field (𝐴), authorized sender (𝑒)
Output: true if the message is authentic, false if not
1: 𝜇𝐴 ← {𝜇𝐴1, 𝜇𝐴2, ..., 𝜇𝐴𝑛} ⊲ Sorted list of ECUs’ asymmetries
2: 𝜎𝐴 ← {𝜎𝐴1, 𝜎𝐴2, ..., 𝜎𝐴𝑛} ⊲ Created after model recreation
3: if 𝐴 > 𝜇𝐴𝑒 + 5𝜎𝐴𝑒 or 𝐴 < 𝜇𝐴𝑒 − 5𝜎𝐴𝑒 then
4: return false

5: end if

6: 𝑧𝑒 ← |(𝐴 − 𝜇𝐴𝑒 )/𝜎𝐴𝑒 |
7: 𝑧𝑒−1 ← |(𝐴 − 𝜇𝐴𝑒−1)/𝜎𝐴𝑒−1 |
8: 𝑧𝑒+1 ← |(𝐴 − 𝜇𝐴𝑒+1)/𝜎𝐴𝑒+1 |
9: return 𝑧𝑒 < 𝑧𝑒−1 and 𝑧𝑒 < 𝑧𝑒+1

their types, overload frames, discrepancies in sampled bits, and
abnormal frame formats. These can be expanded or customized
based on security requirements and identified attack vectors.

5.3 Legitimacy Checks

Authenticity Check. ERACAN computes the mean asymmetry of
the CRC field to determine if a message is authentic using Algo-
rithm 1. ERACANmaintains a sorted list of all ECUs’ expected asym-
metries. It first compares if a message’s asymmetry deviates too
much from the authorized sender. If not, it computes the distance
to the authorized sender and two ECUs with the closest asymmetry.
It then checks if the distance to the authorized sender is the closest.
A message is authentic only if it passes both checks.
Optional Additional Authentication. For systems experienc-
ing high environmental variations where ECUs’ asymmetries may
change abruptly, an optional check is added to eliminate any possi-
ble false positives. If a message fails Algorithm 1, ERACAN compares
its asymmetry with the last message from the authorized sender
and two ECUs with the closest asymmetry. It is deemed illegitimate
if the difference with the authorized sender is not the smallest.
GPIO Check. This detects if a message is transmitted using GPIO,
the most convenient and flexible link layer manipulation technique.
These messages’ bit timing is not derived from the ECU’s oscillator
but programmed by software. The variance of bit periods within the
message multiplies due to greater uncertainty of software timing.
ERACAN considers a message suspicious if its intra-message bit pe-
riod variance is greater than the expected variance of its authorized
sender by at least twice.
Asymmetry Check. This detects simultaneous transmission and
pulse injection near edges in a message, which inevitably increases
asymmetry (Sec. 6). ERACAN considers a message suspicious if any
of its asymmetry measurements satisfies the following equation:

𝐴 > 𝜇𝐴𝑒 + 𝑛𝜎𝐴𝑒 (5)

𝑛 is a configurable threshold. Increasing 𝑛 to cover a larger part
of the distribution increases both false negative and false positive
rates. Its setting is optimal when false positive and false negative
rates are equal and should be determined empirically for each ECU.
Edge Count Check. ERACAN checks if the TDC measures more
timestamps than the expected edge count acquired by ERACAN
controller, in case additional edges are injected by an attacker.
Pulse Injection Check Using Bit Timing. This checks if an error
in a message is caused by an attacker’s pulse injection. An attacker

0

1

(a) During consecutive 1s.

0

1

(b) At a 0→1 transition.

Figure 6: Two possible locations of pulse injection.

0 10 20 30 40 50 60 70 80

Samples

0

2

V
o
lt

a
g
e

/
V

Attacker-injected bit

Figure 7: Voltage of pulse injection at a 0→1 transition.

could inject a 0 when the victim is transmitting multiple 1s (Fig. 6a).
Since the attacker’s pulse is not transmitted based on the victim’s bit
period, its 1→0 edge is not aligned with the expected bit boundary.
ERACAN checks all edges up to the start of an error frame for this
anomaly (If the error is a CRC error, the start of the error frame
is not checked because it is signaled by receivers). It calculates bit
period 𝑇 with all pairs of consecutive 1→0 edges using Equation 1.
It considers the message suspicious if any 𝑇 satisfies Equation 6,
where 𝑛 is the same threshold as asymmetry check:

|𝑇 − 𝜇𝑇𝑉 | > 𝑛𝜎𝑇𝑉 (6)

Pulse Injection Check Using Voltage. If pulse injection check
using bit timing does not find anomalies, ERACAN further checks
voltage. This accounts for the attacker injecting a pulse at a victim’s
0→1 transition (Fig. 6b). Due to imperfect bus termination and
signal reflections [65], voltage level oscillates after the victim’s
falling edge. Such oscillations are superposed on the injected pulse,
causing distortions in Fig. 7. They increase voltage level variance
by orders of magnitude. Fig. 8 shows where ERACAN looks for
abnormal voltage levels. After the attacker injects a 0, the sender
transmits an error frame at the next bit. Depending on where the
bit is injected, receivers transmit an error frame at the next bit or
until they detect a stuff error after six consecutive 0s. Up to twelve
consecutive 0s are observed [20]. The receivers transmit the last
six bits, while voltage level anomalies are within the previous bits.
Therefore, ERACAN finds bits before the last six in superposed error
flags (highlighted in Fig. 8), extracts voltage samples in a 500ns
window around every bit boundary, and computes the variance
within each window. An anomaly is detected if the variance within
any window is larger than the expected variance of the victim’s
stable dominant voltage levels by at least ten times.
Overload Frames Check. ERACAN controller signals to software
if an overload frame is observed. On modern networks they must
be transmitted by an attacker as modern CAN controllers do not
initiate overload frames and only react to them [64]. For legacy net-
works where legitimate overload frames could arise, as the standard
specifies at most two consecutive overload frames can be gener-
ated [20], ERACAN controller alerts if additional ones are observed.
Last EOF Bit Check. ERACAN controller signals to software if a
message’s last EOF bit is 0 but other fields are valid. The 0 could



CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Zhaozhou Tang, et al.

111000000100Sender Tx

000000111111Receivers Tx

000000000000CAN Bus

Attacker injects a 0

Start of sender’s error flags Start of receivers’ error flags

Figure 8: Error flags caused by error injection.

only be transmitted by an attacker because no CAN controllers
should send a 0 in this field if all previous message fields are valid.
Sampled Bits Discrepancies Check. ERACAN controller has two
sets of sampling logic with different sample points. Their sampled
bits are compared in real-time. Any discrepancies indicate an attack
and ERACAN controller signals to software. To ensure discrepancies
in sampled bits between any nodes are visible, ERACAN controller’s
sample points could be set to the earliest (55.6%) and latest (90.9%)
allowed sample points according to protocol specifications [20].
Frame Format Check. ERACAN controller signals to software if
a message does not fully comply with the CAN standard. This is
an unorthodox frame from an attacker. Depending on their CAN
controller designs, legitimate ECUs could transmit certain kinds of
unorthodox frames. Since ERACAN controller is implemented using
an FPGA, check policies can be customized based on what frame
formats are not expected to be transmitted normally.
CRC Errors Check. ERACAN controller signals to software if a
message is properly acknowledged by receivers but a CRC error is
signaled. This means the message is valid. The sender is operating
correctly, and the CRC error could be injected by an attacker.

5.4 Attack Classification

If any check fails, ERACAN determines the attack type as follows.
Attacks Failing Controller Checks. Freeze doom loop, double
receive, Janus / counterfeit frame, and unorthodox frame attacks are
classified based on the respective controller check they fail.
Attacks Causing Errors. ERACAN distinguishes between synchro-

nization disruption, simultaneous transmission, or ERAM error injec-

tion. Injecting pulses to disrupt synchronization causes additional
edges. Simultaneous transmission increases voltage levels after the
ID field. ERACAN uses edge count and voltage levels to distinguish
them. Otherwise, ERAM error injection is the remaining possibility.
Attacks Failing GPIO Check. ERACAN distinguishes between
arbitration denial and bit timing poisoning. Bit timing poisoning
could also fail GPIO check if the attacker injects pulses near 1→ 0
edges, changes a message’s bit period, and increases its variance.
ERACAN confirms the attack is arbitration denial if none of the
message’s asymmetry measurements match the legitimate sender
since the message is transmitted with another peripheral whose bit
timing does not resemble its CAN controller. Otherwise, the attack
is bit timing poisoning since asymmetry measurements not altered
by the attacker still match the sender.
Attacks Failing Authenticity Check. If an attack fails authen-
ticity but not GPIO check, ERACAN distinguishes between mas-

querading attacks and frame hijacking. ERACAN performs sender

Monitor Victim Attacker
ttrM ttrV ttrA

tpV→M tpA→V

Figure 9: An example bus layout and propagation delays.

identification using asymmetry in the CRC field and the first asym-
metry measurement of the message. It chooses the node with the
closest expected asymmetry to the measurements as the sender. If
the senders are different, the attack is frame hijacking since the first
asymmetry measurement should match the legitimate sender but
the CRC field matches the attacker. Otherwise, it is a masquerading
attack as the entire message is sent by the attacker.
Attacks Failing Asymmetry or Edge Count Checks Only.

These could only be bit timing poisoning using pulse injection or
simultaneous transmission. ERACAN again leverages voltage levels
to distinguish each technique.

5.4.1 Attack Prevention Options. By default ERACAN only detects
and classifies attacks. Since ERACAN detects attacks with low false
positive rates in real-time, it can translate detection into prevention
for attacks compromising message integrity, including masquerad-
ing, frame hijacking, Janus, and counterfeit frame attacks. ERACAN
offers prevention options for them that can be enabled per attack.
If enabled, ERACAN destroys messages with error frames if relevant
checks fail (authenticity check for masquerading / frame hijacking
or sampled bits discrepancies check for Janus / counterfeit frames).

6 Security Analysis

Here we consider how ERACAN detects each ERAM attack, an at-
tacker’s potential evasion tactics, and ERACAN’s mitigations.
Masquerading and Frame Hijacking. Both attacks require the
attacker to transmit the entire CRC field and fail authenticity check
using its asymmetry. If an attacker controls messages’ bit timing to
emulate a victim by transmitting with GPIO, he fails GPIO check
even if he passes authenticity check.
Arbitration Denial. First, authenticity check confines an attacker
to launch the attack with his own ID. Then, since he must bypass
the CAN controller, it is detected by GPIO check.
ERAM Error Injection. ERACAN controller CRC errors check de-
tects injecting CRC errors after the ACK field. Pulse injection check
detects injecting bit errors. A smart attacker could attempt to evade
pulse injection check by accurately timing his injection to fall within
the bound in Equation 6. The key difficulty is to accurately account
for signal propagation delays through cables 𝑡𝑝 and transceiver
delays 𝑡𝑡𝑟 to translate the differential voltage into digital signals.
We consider an example bus layout in Fig. 9. The victim starts trans-
mission at 𝑡0. The monitor and attacker each see the victim start
transmission at 𝑡1 (Equation 7) and 𝑡2 (Equation 8). The attacker
then delays Δ𝑡 to inject a pulse at the mth bit in the message and
the pulse arrives at the monitor at 𝑡3 (Equation 9):

𝑡1 = 𝑡0 + 𝑡𝑡𝑟𝑉 + 𝑡𝑝𝑉→𝑀 + 𝑡𝑡𝑟𝑀 (7)

𝑡2 = 𝑡0 + 𝑡𝑡𝑟𝑉 + 𝑡𝑝𝐴→𝑉 + 𝑡𝑡𝑟𝐴 (8)

𝑡3 = 𝑡0 + 𝑡𝑡𝑟𝑉 + 2𝑡𝑝𝐴→𝑉 + 2𝑡𝑡𝑟𝐴 + 𝑡𝑝𝑉→𝑀 + 𝑡𝑡𝑟𝑀 + Δ𝑡 (9)



ERACAN: Defending Against an Emerging CAN Threat Model CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

1

0

(a) Advance a 1→0 edge.

1

0

(b) Delay a 0→1 edge.

Figure 10: Manipulating bit timing by injecting pulses.

Equation 10 derives the value of 𝑇 the monitor uses for pulse injec-
tion check based on Equation 1. Substituting it into Equation 6, the
attacker must satisfy Equation 11 to evade detection:

𝑇 =
𝑡3 − 𝑡1
𝑚

=
2𝑡𝑝𝐴→𝑉 + 2𝑡𝑡𝑟𝐴 + Δ𝑡

𝑚
(10)

|
2𝑡𝑝𝐴→𝑉 + 2𝑡𝑡𝑟𝐴 + Δ𝑡

𝑚
− 𝜇𝑇𝑉 | ≤ 𝑛𝜎𝑇𝑉 (11)

The attacker must accurately estimate 𝑡𝑝𝐴→𝑉 and 𝑡𝑡𝑟𝐴 and adjust
Δ𝑡 . This is not possible without physical access and direct mea-
surements. He could use the typical 5ns/m to estimate 𝑡𝑝 [18] and
obtain reference 𝑡𝑡𝑟 from the transceiver’s datasheet, but these esti-
mates are highly inaccurate due to environmental conditions and
manufacturing variations. Thus, an attacker has minimal chances
to evade detection and inject a single error. To inject more errors
and change the victim’s error state, the probability of consistently
evading detection decreases exponentially.
Synchronization Disruption. An attacker must inject a pulse
after the synchronization segment in a sender’s recessive bit. Since
the synchronization segment is at least 1/25 of a bit time [20], the
attacker’s pulse is at least 1/25 of a bit time after a bit boundary and
can always be detected by pulse injection check using Equation 6.
Attacks Using Simultaneous Transmission. This technique is
used to inject errors or poison bit timing. When two nodes transmit
simultaneously, they do not see the end of the preceded message
at the same time due to propagation delays [51]. They do not start
transmission at exactly the same time. Their misaligned pulses over-
lap, increasing pulse width and asymmetry. This fails asymmetry
check. The attacker could not evade detection since the increase in
asymmetry depends on propagation delays outside his control.
Poisoning Attacks on Bit Timing. To manipulate bit timing
measurements, an attacker could inject small pulses into the vic-
tim’s message to introduce extra timestamps. This is detected by
edge count check. Alternatively, he could inject pulses close to vic-
tim’s edges to advance a 1→0 edge (Fig. 10a) or delay a 0→1 edge
(Fig. 10b). According to Equation 2, both increase asymmetry and
are detected by asymmetry check. Similar to error injection, evad-
ing asymmetry check requires accurate timing and has low success
rates. Moreover, even if the attacker succeeds, he can only increase
a single asymmetry measurement to at most 𝜇𝐴 + 5𝜎𝐴 . The change
to 𝜇𝐴 modeled by ERACAN is bounded. To significantly change 𝜇𝐴 ,
the attacker must inject multiple pulses in the same message to
poison a large portion of measurements. All of them need to evade
detection, and the chance of success decreases exponentially.
Securing Model Recreation. A cryptographic scheme providing
source authenticity and payload obfuscation is required to prevent
spoofing and bit timing poisoning. Since attackers cannot predict
the payload, they cannot poison bit timing by preparing the same
message for simultaneous transmission or anticipating edge posi-
tions and injecting pulses. Moreover, we do not use the CRC fields

ID Payload ACK EOF IDIFS
TAC

Checks & Online Updates

Authenticity CheckTTP / Timestamp

Timestamp Processing TC + TU

Figure 11: Processing by ERACAN in each message field.

and stuff bits for feature calculation since the attacker can predict
them by reading the preceding content. A message is not used if it
is retransmitted after an error. This is in case the attacker learns
a message’s content, injects an error, and then poisons bit timing
in the retransmitted message. We choose the scheme in Appendix
A as it is lightweight and meets both requirements. Any schemes
meeting both requirements, such as [27, 49], can also be used.
AttacksDetected byController Checks. Freeze doom loop, double
receive, Janus / counterfeit frames, and unorthodox frames are de-
tected by ERACAN controller overload frames, last EOF bit, sampled
bits discrepancies, and frame format checks respectively (Sec. 5.3).

7 Performance Analysis

7.1 Performance Deadlines

Fig. 11 shows ERACAN’s mandatory processing steps for every
message (steps 1 to 6 in Fig. 5). Other processing is only required
after an error or attack. They have the following deadlines.
Timestamp Processing. After a message’s ID field completes,
ERACAN takes 𝑇𝑇𝑃 to retrieve and process each edge timestamps.
This must finish before the next edge arrives, in the worst case
within one bit time (2𝜇s on 500kbps bus). As we show in Sec. 8.4, this
can often finish well within the deadline and provide opportunities
to leverage the idle time before the next edge for other processing.
Authenticity Check. After the ACK field starts, ERACAN performs
authenticity check in 𝑇𝐴𝐶 . It must finish before the last EOF bit to
enable attack prevention using error frames. The deadline is (2 bit
ACK field + 6 bit EOF) = 8 bit time (16𝜇s on 500kbps bus). ERACAN
calculates a message’s mean asymmetry in the CRC field iteratively
using each new measurement during timestamp processing. This
adds to 𝑇𝑇𝑃 but helps authenticity check meet its deadline because
ERACAN only has to run Algorithm 1 after the ACK field.
Legitimacy Checks and Online Updates. Besides authenticity
check, ERACAN also performs GPIO, edge count, and asymmetry
checks, in a time totaling𝑇𝐶 . It then performs online updates in𝑇𝑈 .
Theymust finish before the next message’s ID field completes. In the
worst case assuming 100% bus load and no bit stuffing, the deadline
is (2 bit ACK field + 7 bit EOF + 3 bit IFS + 1 bit SOF + 11 bit ID) =
24 bit time (48𝜇s on 500 kbps bus). ERACAN computes a running
bit period variance for GPIO check and performs asymmetry check
once a measurement is acquired. This amortizes the cost and leaves
more time for the most time-consuming online updates.

7.2 Memory Overhead

ERACAN’s arithmetic operations use 4-byte floating point numbers.
For each ECU, ERACAN stores 5 model parameters: 𝜇𝐴 , 𝜎𝐴 , 𝜇𝑇 , 𝜎𝑇 ,
and intra-message bit period variance. For 𝑁 ECUs, this requires
(20×𝑁 ) bytes. ERACAN also needs to buffer a message’s timestamps,
bit period, and asymmetry measurements until they are used by



CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Zhaozhou Tang, et al.

Table 1: Testbed setup for CRAM experiments.

Node MCU Transceiver Distance To Monitor

ECU1 Arduino Due TJA1051 40cm
ECU2 Arduino Due TJA1051 60cm
ECU3 STM32F334 SN65HVD230 110cm
ECU4 STM32H755 TJA1051 170cm
ECU5 STM32F334 SN65HVD230 200cm

online updates. If bits alternate between 1 and 0 in the data and
CRC fields of an 8-byte message, it contains 84 timestamps, and 84
measurements accordingly. No valid messages could contain more
timestamps. To be conservative, ERACAN needs enough memory to
buffer this amount of data (84 × 4 = 336 bytes).

8 Evaluation

We implement ERACAN to evaluate its security and performance
on a testbed and a real vehicle (2011 Chevy-Impala).
Implementation. We use a PYNQ-Z2 board as the monitor node.
PYNQ-Z2 offers an SoC with FPGA fabric and a 650MHz dual-core
ARM Cortex-A9 processor. It supports security features such as
TrustZone, key storage, and secure boot. Following prior work [52],
we implement the TDC in the FPGA fabric based on [5]. We design
ERACAN controller by adding features to an open-source Verilog
CAN controller design [42]. They interact with the ARM proces-
sor using interrupts and memory-mapped interfaces. To evaluate
ERACAN’s security, we collect TDC measurements, ERACAN con-
troller information, and acquire voltage using a PicoScope 5244D
oscilloscope at a sampling rate of 20MS/s and a resolution of 8 bit.
We further implement bit timing features extraction, modeling, and
checks on the ARM processor to evaluate its performance.
Choosing𝑤 .We collect messages, compute a moving average of
asymmetry in the last 1 second, and exhaustively search between
0.9 and 1 for a𝑤 in Equation 3 that best approximates this value.𝑤
are 0.99975 and 0.99972 for the testbed and vehicle respectively.
Choosing Detection Threshold. To choose the threshold 𝑛 in
Equations 5 and 6, we run error injection attack and search for the
value that yields equal false positive and negative rates. The chosen
threshold is 4.8 and 4.5 respectively for the testbed and vehicle.

8.1 CRAM Security Evaluation on Testbed

We set up a 500kbps testbed with 5 ECUs configured according to
Table 1 to test ERACAN against CRAM attacks in Table 2.
Sender Identification.We let each ECU transmit 8-byte messages
with random data every 10ms. We collect 50000 messages and use
the first 100 messages from each ECU for model creation. As shown
in Fig. 12a, ECUs have distinct asymmetries. Therefore we identify
senders of all messages with 100% accuracy.
MasqueradingAttacks.We let each ECU transmit 10000messages,
1/5 of which are under the ID of each ECU. Thus, bus traffic contains
legitimate messages and masquerading attacks for every attacker-
victim pair. We achieve 100% detection and no false positives.
Environmental Impacts.We reduce message periods to 100ms
and repeat sender identification under temperature variations. We

Table 2: Experiments results of CRAM attacks on the testbed.

Attack Masquerading Bus-Off Bit Timing Poisoning

Detection Rate 100% 100% 100%
False Positive 0% 0.02% 0.02%

−100 −50 0

Asymmetry / ns

0

25

50

75

P
ro

p
o
rt

io
n

/
% ECU1

ECU2
ECU3
ECU4
ECU5

(a) In the absence of attacks.

0 100 200

Asymmetry / ns

0

20

40

60

P
ro

p
o
rt

io
n

/
% ECU1 / 2

ECU1 & 2

(b) Under error handling attacks.

Figure 12: Proportion of ECUs’ asymmetry per range.

start at 25°C (77°F), heat the room to 28°C (82°F), cool it down to 18°C
(64°F), and bring the temperature back to 25°C (77°F). We collect
550000 messages in three hours. As mentioned in Sec. 5.2,𝑤 should
be reduced in this scenario. To evaluate its impact, we first test three
values: 0.99975 (default𝑤 for other experiments), 0.994875, and 0.99
without enabling the optional additional authentication (Sec. 5.3).
We get 7, 4, and 3 misclassifications respectively. Next, we enable
the additional authentication. This eliminates all misclassification
for all three𝑤 , reducing the false positive rate to 0%.
Error-Handling Attacks. We use one ECU to launch bus-off

(Sec. 2.2.2) and bit timing poisoning (Sec. 6) attacks on another
ECU using simultaneous transmission. We test all attacker-victim
pairs. For each pair we collect 2500 messages from each ECU and
2500 messages under attack. We achieve 100% detection and a 0.02%
false positive rate. Fig. 12b shows an example of ECU1 attacking
ECU2. Asymmetries of all attacked messages are larger than normal
ones from any single ECU by a significant margin.

8.2 ERAM Security Evaluation on Testbed

We build a 500kbps testbed with an attacker, a transmitter, and a
listener. The attacker and transmitter both transmit normal mes-
sages every 10ms. The attacker launches ERAM attacks (Table 3) on
some of the transmitter’s messages using GPIO. For each attack,
we record all bus traffic until we collect 2500 attacked messages.
Arbitration Denial. We compare the intra-message bit period
variance of attacked messages from the attacker’s GPIO to messages
from its CAN controller, and observe at least a four-fold increase.
With GPIO check, we achieve 100% detection and no false positives.
Detecting Error Injection Using Bit Timing. We test two cases.
First, we estimate delays and accurately time the attacker’s pulse
injection according to Equation 11. Second, we do not estimate
delays. We achieve 99.9% and 99.8% detection respectively and
a 0.04% false positive rate. Estimating delays does not help the
attacker evade detection since estimations are far from accurate.
Detecting Error Injection Using Voltage. We observe that at-
tacks increase voltage level variance by at least 12 times. We achieve
100% detection and no false positives.



ERACAN: Defending Against an Emerging CAN Threat Model CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Table 3: Experiments results of ERAM attacks on the testbed.

Attack

Frame Error Arbitration Synch. Janus Counterfeit Freeze Double Unorthodox Bit Timing

Hijacking Injection Denial Disruption Frame Frame D. Loop Receive Frame Poisoning

Detection Rate 100% 99.8-100% 100% 100% 100% 100% 100% 100% 100% 99.9-100%
False Positive 0% 0-0.04% 0% 0.04% 0% 0% 0% 0% 0% 0.02%

3.0 3.5 4.0 4.5 5.0 5.5 6.0

Detection Threshold

0.00

0.25

P
e
rc

e
n
t False Negative

False Positive

Figure 13: Influence of detection threshold.

Synchronization Disruption.We set different bit segments for
the transmitter and listener so they adjust bit timing differently
when resynchronizing. We let the attacker inject pulses when the
transmitter sends recessive bits and confirm the attack succeeds
when the listener raises a CRC error. We achieve 100% detection
and a 0.04% false positive rate.
Janus and Counterfeit Frames. We set the listen’s sample point
to 88.9%, and adjust the transmitter’s sample point until attacks
succeed reliably when set to 77.8%. The attacker transmits Janus
frames read differently by the transmitter and listener, and launches
counterfeit frame attacks on some of the transmitter’s messages.
Without setting its sample points to the extreme (Sec. 5.3), ERACAN
controller already detects attacks with 100% accuracy and raises no
false positives when its sample points are set to 65% and 90%.
Unorthodox Frames.We let the attacker transmit two types of
unorthodox frames: frames with data fields longer than 8 bytes and
remote frames with data. We implement their detection policies
in ERACAN controller and achieve 100% detection with no false
positives. For other kinds of unorthodox frames, ERACAN controller
can be conveniently extended with respective detection policies.
Bit Timing Poisoning.We let the attacker corrupt the transmit-
ter’s bit timing with pulse injection. The detection rate is 99.9% if
four measurements in a message are altered, and tends to 100% if
more are altered. The false positive rate is 0.02%. In our test vehicle
a message contains 18.6 measurements on average. Attackers can
only poison a small part of a single message, and the chance to
poison a large portion of ERACAN training set is negligible.
Frame Hijacking, Freeze Doom Loop, and Double Receive.

All these attacks are detected 100% with no false positives.
Detection Threshold Impacts. To evaluate the impact of the
detection threshold, we test thresholds from 3 to 6 for error injection.
As shown in Fig. 13, its impact on false positives is far greater.
Increasing the threshold from 3 to 5 increases the coverage of
the normal bit timing distribution from 99.7% to 99.9999% and
reduces false positives by orders of magnitude. Conversely, when
the threshold increases, the allowed time window for attackers to
inject a pulse without being detected (Equation 11) only increases
by a few nanoseconds. Their chance of evading detection, and
consequently the false negative rate, does not change significantly.

Table 4: Attack prevention results.

Attack Masquerading

Frame Janus Counterfeit

Hijacking Frame Frame

Prevention 100% 100% 100% 100%

Attack Prevention.We let the attacker launch each attack in Ta-
ble 4 2500 times. ERACAN detects and destroys all attacked messages
with error frames, achieving 100% prevention.
AttackClassification.We launch seven attacks on a 5-ECU testbed:
masquerading, error-handling attacks using simultaneous trans-
mission, synchronization disruption, ERAM error injection, frame
hijacking, arbitration denial, and bit timing poisoning with pulse
injection. Other attacks are not tested because they can be easily
classified using ERACAN controller checks. Each attack is launched
2500 times. We achieve a 99.8% overall classification accuracy. We
misclassify attack types only in two scenarios. 0.3% of masquerad-
ing attacks are misclassified as frame hijacking. This happens when
two nodes’ asymmetries are close, and the first asymmetry mea-
surement in the message matches a node other than the attacker
due to its natural variations. 1.2% of arbitration denial attacks are
misclassified as bit timing poisoning. This happens when some
asymmetry measurements of the message happen to match the
legitimate sender, although its chance is low, as our results show.

8.3 Security Evaluation on Real Vehicle

Our test vehicle has four ECUs on a 500kbps CAN bus. We connect
ERACAN monitor node and an attacker node to its OBD-II port and
perform experiments in Table 5.
Sender Identification.We collect ECUs’ bit timing over four days
with varying weathers and temperatures. We identify message
senders with 100% accuracy. This translates to 100% detection for
masquerading attacks by in-vehicle ECUs and no false positives.
Frame Hijacking. We achieve 100% detection. CRC fields of at-
tacked messages contain bit timing of the attacker. Although ERA-
CAN has never modeled the attacker’s bit timing before, it can still
distinguish them from in-vehicle ECUs.
Detecting Error Injection Using Bit Timing. We achieve 99.7%
detection. We observe that ECUs’ bit periods have very small varia-
tions (maximum 𝜎𝑇 is 672ps). According to Equation 6, it is unreal-
istic for a remote attacker to evade detection since he must inject
an error in a window shorter than 7ns.
Detecting Error Injection Using Voltage. We measure the vari-
ance of ECUs’ stable dominant voltage levels on the first day and
set a fixed detection threshold. We launch attacks on the following
two days. We achieve 100% detection on both days using the fixed
threshold despite changes in ECUs’ voltage features across days.



CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Zhaozhou Tang, et al.

Table 5: Real vehicle experiments results.

Experiment Sender Identification Frame Hijacking Error Injection Synch. Disruption Freeze D. Loop Double Receive

Accuracy 100% 100% 99.7-100% 100% 100% 100%

0 5000

Messages

60

80

100

120

A
sy

m
m

e
tr

y
/

n
s

Reference
Poisoned

(a) Without asymmetry check.

0 5000

Messages

61.0

61.2

61.4

A
sy

m
m

e
tr

y
/

n
s

Reference
Poisoned

(b) With asymmetry check.

Figure 14: Asymmetry learned from online updates.

Bit Timing Poisoning.We let the attacker poison bit timing using
pulse injection on one ID of an ECU. The attacker starts by cor-
rupting a small portion of a message, then gradually increases the
amount of corruption. We perform online updates on the IDs not
poisoned by the attacker and use this as a reference for the victim’s
true bit timing. We then perform online updates using all mes-
sages including poisoned ones, with or without asymmetry check
enabled, and compare the learned asymmetry with the reference.
Without asymmetry check, the attacker successfully tricks ERACAN
into gradually learning a larger asymmetry as in Fig. 14a. With
asymmetry check the attack fails. The ECU’s asymmetry learned
by ERACAN closely resembles the reference as in Fig. 14b.
Double Receive, Freeze Doom Loop, and Synch. Disruption.

We achieve 100% detection for all of these attacks using ERACAN
controller checks or pulse injection check.

8.4 Performance Evaluation

To test ERACAN’s feasibility and abilities to operate in real-time,
we connect it to a testbed with 5 ECUs operating at 500kbps and
profile its latency as it processes 20000 messages.
Timestamp Processing. ERACAN takes 0.4𝜇s on average to re-
trieve one TDC timestamp and another 0.21𝜇s to calculate bit pe-
riod or asymmetry. This is well within the 2𝜇s deadline. Therefore,
ERACAN uses the remaining time for other processing, such as asym-
metry checks. Adding them brings the processing time to 0.72𝜇s
on average and 1.34𝜇s in the worst case, still within the deadline.
Authenticity Check. For 5 ECUs, authenticity check takes 0.26𝜇s
on average and 0.81𝜇s in the worst case. We experiment with up to
10 ECUs and show their average latency in Table. 6. The latency is
almost constant and it only takes 0.27𝜇s with 10 ECUs. Deadlines
are always met despite the different number of ECUs on the testbed.
GPIO and Edge Count Checks. GPIO check takes 33.8ns on aver-
age and 70.8ns in the worst case. Edge count check takes 0.20𝜇s on
average and 0.22𝜇s in the worst case.
Online Updates. It takes 0.23𝜇s on average and 0.78𝜇s at most to
process one asymmetry and bit periodmeasurement. If every update
takes the worst-case 0.78𝜇s and the number of measurements in

Table 6: ERACAN average authenticity check latency.

𝑁𝐸𝐶𝑈 5 6 7 8 9 10

Latency / 𝜇s 0.263 0.250 0.250 0.256 0.265 0.265

Table 7: ERACAN operation latencies.

Processing Stage Average Worst-Case Deadline

Timestamp Processing 0.72𝜇s 1.34𝜇s 2𝜇s
Authenticity Check 0.26𝜇s 0.81𝜇s 16𝜇s

Checks & Online Updates 4.77𝜇s 21.4𝜇s 48𝜇s

messages is at maximum (Sec. 7.2), online updates take 32.8𝜇s. This
most pessimistic estimate is still within the 48𝜇s deadline.
Real-Time Capability.We calculate the average and worst-case
latencies of each processing stage and compare them with the
deadlines in Table 7. To calculate online updates latency, we use
our profiling results and the average and maximum number of
measurements per message from our test vehicle (18.6 and 26). All
operations meet deadlines. Therefore, ERACAN can operate on a
500kbps CAN bus loaded up to 100% and guarantee all detected
masquerading and frame hijacking attacks can be prevented.
Memory Footprint. We measure the code and data size of our
implementation and find them to be 16.7kB and 1.44kB, respectively.
As many recent commercial automotive-grade FPGAs offer at least
256kB on-chip memory [3], this overhead is reasonable.

9 Benchmark Comparison

ERACAN is designed for ERAM attacks which other defenses do not
protect from, so it is hard to compare its performance with other
defenses on the same attack set. Instead, we compare ERACAN with
separate defense categories, followed by its performance on CRAM
attacks that other systems also defend against.
Compared to Cryptography and Secret Delay IDS. As shown
in Table 8, these approaches guarantee message authenticity under
CRAM. They do not protect against error-handling attacks except
for ZBCAN [57]. Under ERAM, all secret delay approaches and some
cryptographic approaches lose their security guarantees (Sec. 4.3).
Furthermore, they offer no security against the wide range of new
ERAM attacks (Sec. 4.2). ERACAN detects both CRAM attacks as
well as all ERAM attacks. It is the first to offer attack classification,
enabling intrusion responses to build on its output. Furthermore,
ERACAN does not increase busload or reschedule bus traffic, which
is required for some of these approaches.
Compared to Physical Signal IDS. As shown in Table 8, they
only detect CRAM masquerading attacks but not error-handling
attacks, except for VoltageIDS [13]. However, some are evadable



ERACAN: Defending Against an Emerging CAN Threat Model CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Table 8: How ERACAN compares with other defense systems.

Attacks Features Cost

Defense Approach

Spoofing Error Handling ERAM Single-Msg Classify Increase Modify

CRAM ERAM CRAM ERAM Attacks Detection Attacks Busload Traffic

Cryptography [25, 35, 49, 50]  G# # # # ✓ X ✓ X

Secret Delay IDS [57, 71]  # G# # # ✓ X X ✓
Physical Signal IDS [13, 32, 52, 56]  G# G# # # ✓ X X X

Interval / Clk-Skew IDS [11, 53, 72]  # # # # X X X X

Payload Inspection IDS [1, 38, 67]  # # # # X X X X

ERACAN      ✓ ✓ X X

Table 9: Benchmarking ERACAN authenticity check latency.

EASI [32] ASSASSIN [56] SPARTA [55] ERACAN

1.02𝜇s*𝑁𝐸𝐶𝑈 0.94𝜇s*𝑁𝐸𝐶𝑈 1.15𝜇s 0.26𝜇s

under ERAM and they do not detect any new ERAM attacks. ERACAN
offers stronger security by detecting all CRAM and ERAM attacks.
Compared to Interval and Payload Inspection IDS. As Table 8
shows, these approaches only detect CRAM message injection but
can be evaded by ERAM tactics. ERACAN protects against the full
range of CRAM and ERAM attacks. Furthermore, ERACAN offers
single message detection to ensure no low-level attacks can pass
unnoticed, which some of these defenses do not offer.
Operation Latency. Table 9 compares ERACAN’s average message
authenticity check latency with three recent lightweight defenses,
assuming all systems use a 650MHz processor. For a fair comparison,
we exclude the time to take measurements and extract features.
The remaining processing steps are performed by the CPU and
their latency does not depend on the measuring equipment used.
ERACAN’s latency is the lowest. Compared to EASI and ASASSIN,
ERACAN’s latency is independent of the number of ECUs and allows
it to scale to a CAN bus with more ECUs.
Masquerading Attacks. Table 10 compares ERACAN’s perfor-
mance on masquerading attacks with four latest defenses offering
single message detection. ERACAN’s detection rate beats all systems
except for EdgeTDC, whose high performance comes at the cost
of significant hardware changes by doubling the cable length [52].
ERACAN offers guaranteed prevention of all detected masquerading
attacks, which only ZBCAN offers [57]. Unlike ZBCAN, ERACAN
achieves this without rescheduling bus traffic.

10 Discussion and Limitations

Corrupted Payloads. ERACAN mainly aims to fill the research
gap in emerging ERAM attacks. Detecting an ECU corrupting the
payloads of its own messages, an old CRAM tactic, requires payload
inspection. This is orthogonal to ERACAN’s goal. Good solutions
already exist [1, 38, 67] and can be integrated. ERACAN offers addi-
tional security as it cannot be deceived by Janus frames that look
benign to the monitor but malicious to other nodes (Sec. 4.3).
False Positive Consequences. The only two cases where ERACAN
has non-zero false positive rates are with error-handling (e.g., error

Table 10: Performance comparison onmasquerading attacks.

Defense System Detection Prevention Deployment Cost

EASI [32] 99.66% - 1 Monitor Node
ASSASSIN [56] 99.02% - 1 Monitor Node

EdgeTDC [52] 100% - 1 Monitor Node +
Double Cable Length

ZBCAN [57] 98.5% 98.5% 1 Monitor Node +
Reschedule Bus Traffic

ERACAN 99.99%+ 99.99%+ 1 Monitor Node

injection) and bit timing poisoning attacks. Specifically, for error-
handling attacks, there is a 0-0.04% chance ERACAN treats a genuine
error as an attack. These misclassifications only relate to whether
errors (uncommon on a healthy bus) are malicious and do not affect
normal messages. We can build on CopyCAN’s [37] idea of reading
error frames and tracking ECUs’ error counters to further reduce
false alarms. Namely, ERACAN can alert only when an ECU’s error
counter reaches a threshold and a large portion of its past errors
are suspicious, instead of for single errors, because it is much less
likely that multiple genuine errors are all classified as malicious.
Finally, ERACAN does not take any intrusive actions against error-
handling attacks. As such, the consequences of misclassifications
are limited to raising an alarm. For bit timing poisoning attacks, the
false positive rate is 0.02%. The only aim of this attack is to poison
the online updates process, not to falsify data or impersonate other
ECUs. Consequently, ERACAN does not destroy these messages and
only excludes them from online updates.
Possible Extensions. In Sec. 5.3, authenticity check only uses the
mean asymmetry of the CRC field. We can extend it with other sta-
tistical measures to slightly improve its accuracy. We can calculate
both a message’s mean asymmetry and variance and use a t-test to
assess if its distribution is the same as its authorized sender. This
could be more reliable as it accounts for the variability of samples
and remains robust if ECUs’ bit timing is not normally distributed.
However, it incurs more processing time. Similarly, ERACAN could
be extended to monitor several buses operating at different security
levels as was proposed for other buses [15, 16].
Non-GPIO Peripherals. In our evaluations, we focus mainly on
the GPIO as it is the most versatile and convenient peripheral.
Although ERAM attacks can be launched with other peripherals,
ERACAN will maintain high detection performance since most of



CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Zhaozhou Tang, et al.

its checks do not depend on the technique to launch attacks. Its
performance could weaken only in exceptional cases of arbitration
denial attacks. Specifically, if the attacker could manage to find a
peripheral whose bit timing closely resembles the CAN controller,
abide by both the peripheral’s and CAN’s valid formats, and be
originally authorized to transmit a high-priority ID. Even in this
case, since arbitration denial with a single message only delays the
victim’s message by its duration, the attacker must launch the attack
continuously to maximize the chance that the message misses its
deadline or prevent it from gaining bus access. ERACAN can be
extended to monitor message frequency to detect such scenarios.
Safeguarding the Monitor. Like most IDSs, we assume trust in a
central monitor. Nonetheless, we tookmeasures tominimize the risk
of its failure or compromise. First, we connected it in parallel, not
as a pass-through gateway. Thus, in the event of failure, it fails safe
and bus communication continues. Second, to minimize the risk of
compromise, we used hardware with security features: secure boot
and secure key storage allow crucial assets (e.g., program image,
bitstream files for FPGA configuration) to be signed and encrypted,
preventing tampering. Finally, except for its connection to the CAN
bus, the monitor is air-gapped with no other entry points.
Bypassing Physical Layer Rules. In theory, remote attackers
could bypass physical layer rules by controllingmore than 8 ECUs [41].
This assumption is unrealistic and not considered by ERACAN. To
account for this, ERACAN could easily integrate existing solutions
to detect physical layer manipulations by flipping 0 to 1 [53].

11 Conclusions

In this paper, we aimed to bridge a critical gap in CAN security
research: the escalating threat of remote attackers gaining exten-
sive link layer control (ERAM model). We introduced ERACAN, the
first comprehensive defense system tailored explicitly to counter
this attacker model in addition to the conventional model (CRAM),
offering detection, classification, and prevention abilities against
both models. We started with a security analysis of the ERAMmodel,
focusing on its capabilities, attacks enabled, and impacts on con-
ventional defenses. We then designed ERACAN to monitor essential
link and physical layer features for securing against all ERAM
attacks. ERACAN addresses complex performance and reliability
challenges posed by such meticulous monitoring by delegating
link layer surveillance to an autonomous ERACAN controller and
employing innovative smart-checking to leverage physical signals
efficiently. We analyzed ERACAN’s security against various ERAM
attacks and evasion tactics. Finally, we validated ERACAN’s feasibil-
ity, security, performance, and real-time capabilities by evaluating
it on a testbed and a real vehicle’s CAN bus.

Acknowledgments

We thank the anonymous reviewers for their invaluable feedback
and our shepherd for the guidance in the revision process. This work
was supported in part by the National Science Foundation (NSF)
under the Secure and Trustworthy Cyberspace (SaTC) program
and Grant CNS-2144645, as well as the Office of Naval Research
(ONR) under Grants N00014-22-1-2671 and N00014-18-1-2674. Any
opinions, findings, and conclusions in this paper are those of the
authors and do not necessarily reflect the views of our sponsors.

References

[1] Natasha Alkhatib, Lina Achaji, Maria Mushtaq, Hadi Ghauch, and Jean-Luc
Danger. 2023. WIP: AMICA: Attention-based Multi-Identifier model for asyn-
chronous intrusion detection on Controller Area networks. In Symposium on

Vehicles Security and Privacy (VehicleSec).
[2] Khaled Serag Alsharif. 2023. PROACTIVE VULNERABILITY IDENTIFICATION

AND DEFENSE CONSTRUCTION – THE CASE FOR CAN. (2023).
[3] AMD. 2024. XA Automotive Product Selection Guide. https://docs.amd.com/v/u/

en-US/xa-portfolio-product-selection-guide.
[4] Rohit Bhatia, Vireshwar Kumar, Khaled Serag, Z Berkay Celik, Mathias Payer, and

Dongyan Xu. 2021. Evading Voltage-Based Intrusion Detection on Automotive
CAN.. In Network and Distributed System Security Symposium (NDSS).

[5] Benjamin Blase. 2015. tdc-fpga: Time to digital converter for use on a Xilinx
7-series FPGA. https://github.com/benbr8/tdc-fpga.

[6] Tim Brom. 2018. CANT. https://github.com/bitbane/CANT.
[7] Paolo Cerracchio, Stefano Longari, Michele Carminati, and Stefano Zanero. 2024.

Investigating the Impact of Evasion Attacks Against Automotive Intrusion De-
tection Systems. In Symposium on Vehicles Security and Privacy (VehicleSec).

[8] Stephen Checkoway, Damon McCoy, Brian Kantor, Danny Anderson, Hovav
Shacham, Stefan Savage, Karl Koscher, Alexei Czeskis, Franziska Roesner, and
Tadayoshi Kohno. 2011. Comprehensive Experimental Analyses of Automotive
Attack Surfaces. In USENIX Security Symposium.

[9] Kyong-Tak Cho and Kang G. Shin. 2016. Error Handling of In-vehicle Networks
Makes Them Vulnerable. In ACM SIGSAC Conference on Computer and Commu-

nications Security (CCS).
[10] Kyong-Tak Cho and Kang G. Shin. 2017. Viden: Attacker Identification on In-

Vehicle Networks. In ACM SIGSAC Conference on Computer and Communications

Security (CCS).
[11] Kyong-Tak Cho and Kang G. Shin. 2016. Fingerprinting electronic control units

for vehicle intrusion detection. In USENIX Security Symposium.
[12] Wonsuk Choi, Hyo Jin Jo, Samuel Woo, Ji Young Chun, Jooyoung Park, and

Dong Hoon Lee. 2018. Identifying ECUs Using Inimitable Characteristics of
Signals in Controller Area Networks. IEEE Transactions on Vehicular Technology

(2018).
[13] Wonsuk Choi, Kyungho Joo, Hyo Jin Jo, Moon Chan Park, and Dong Hoon Lee.

2018. VoltageIDS: Low-Level Communication Characteristics for Automotive
Intrusion Detection System. IEEE Transactions on Information Forensics and

Security (2018).
[14] Alvise de Faveri Tron, Stefano Longari, Michele Carminati, Mario Polino, and

Stefano Zanero. 2022. CANflict: Exploiting Peripheral Conflicts for Data-Link
Layer Attacks on Automotive Networks. In ACM SIGSAC Conference on Computer

and Communications Security (CCS).
[15] Josh D Eckhardt, Thomas E Donofrio, and Khaled Serag. 2019. System andmethod

of monitoring data traffic on a MIL-STD-1553 data bus. US Patent 10,467,174.
[16] Josh D Eckhardt, Thomas E Donofrio, and Khaled Serag. 2020. Multiple security

level monitor for monitoring a plurality of MIL-STD-1553 buses with multiple
independent levels of security. US Patent 10,685,125.

[17] Bernd Elend and Tony Adamson. 2017. Cyber security enhancing CAN
transceivers. In International CAN Conference.

[18] International Organization for Standardization (ISO). 2016. Road Vehicles —

Controller area network (CAN). Part 2: Highspeed medium access unit.
[19] Mahsa Foruhandeh, Yanmao Man, Ryan M. Gerdes, Ming Li, and Thidapat

Chantem. 2019. SIMPLE: single-frame based physical layer identification for
intrusion detection and prevention on in-vehicle networks. In Annual Computer

Security Applications Conference (ACSAC).
[20] Robert Bosch GmbH. 1991. CAN Specification. (1991).
[21] Bogdan Groza, StefanMurvay, Anthony VanHerrewege, and Ingrid Verbauwhede.

2012. Libra-can: a lightweight broadcast authentication protocol for controller
area networks. In International Conference on Cryptology and Network Security.

[22] Bogdan Groza, Lucian Popa, and Pal-Stefan Murvay. 2018. INCANTA - INtrusion
Detection in Controller Area Networks with Time-Covert Authentication. In
Security and Safety Interplay of Intelligent Software Systems.

[23] Bogdan Groza, Lucian Popa, and Pal-Stefan Murvay. 2021. CANTO - Covert
AutheNtication With Timing Channels Over Optimized Traffic Flows for CAN.
IEEE Transactions on Information Forensics and Security (2021).

[24] Bogdan Groza, Lucian Popa, Pal-Stefan Murvay, Yuval Elovici, and Asaf Shabtai.
2021. CANARY - a reactive defense mechanism for Controller Area Networks
based on Active RelaYs. In USENIX Security Symposium.

[25] Kyusuk Han, André Weimerskirch, and Kang G. Shin. 2015. A practical solution
to achieve real-time performance in the automotive network by randomizing
frame identifier. In ESCAR Europe.

[26] Oliver Hartkopp and R Schilling. 2012. Message authenticated CAN (MaCAN).
In ESCAR.

[27] Ahmed Hazem and HA Fahmy. 2012. Lcap-a lightweight can authentication
protocol for securing in-vehicle networks. In EASCAR.

[28] Magnus-Maria Hell. 2015. The physical layer in the CAN FD world-The update.
In International CAN Conference.

https://docs.amd.com/v/u/en-US/xa-portfolio-product-selection-guide
https://docs.amd.com/v/u/en-US/xa-portfolio-product-selection-guide
https://github.com/benbr8/tdc-fpga
https://github.com/bitbane/CANT


ERACAN: Defending Against an Emerging CAN Threat Model CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

[29] Abdulmalik Humayed, Fengjun Li, Jingqiang Lin, and Bo Luo. 2020. CANSen-
try: Securing CAN-Based Cyber-Physical Systems against Denial and Spoofing
Attacks. In European Symposium on Research in Computer Security (ESORICS).

[30] Sungwoo Kim, Gisu Yeo, Taegyu Kim, Junghwan "John" Rhee, Yuseok Jeon, An-
tonio Bianchi, Dongyan Xu, and Dave (Jing) Tian. 2022. ShadowAuth: Backward-
Compatible Automatic CAN Authentication for Legacy ECUs. In ACM ASIA

Conference on Computer and Communications Security.
[31] Marcel Kneib and Christopher Huth. 2018. Scission: Signal Characteristic-Based

Sender Identification and Intrusion Detection in Automotive Networks. In ACM

SIGSAC Conference on Computer and Communications Security (CCS).
[32] Marcel Kneib, Oleg Schell, and Christopher Huth. 2020. EASI: Edge-Based Sender

Identification on Resource-Constrained Platforms for Automotive Networks. In
Network and Distributed System Security Symposium (NDSS).

[33] Karl Koscher, Alexei Czeskis, Franziska Roesner, Shwetak Patel, Tadayoshi Kohno,
Stephen Checkoway, Damon McCoy, Brian Kantor, Danny Anderson, Hovav
Shacham, et al. 2010. Experimental security analysis of a modern automobile. In
IEEE Symposium on Security and Privacy (S&P).

[34] Sekar Kulandaivel, Shalabh Jain, Jorge Guajardo, and Vyas Sekar. 2021. CAN-
NON: Reliable and Stealthy Remote Shutdown Attacks via Unaltered Automotive
Microcontrollers. In IEEE Symposium on Security and Privacy (S&P).

[35] Ryo Kurachi, Yutaka Matsubara, Hiroaki Takada, Naoki Adachi, Yukihiro
Miyashita, and Satoshi Horihata. 2014. CaCAN-centralized authentication system
in CAN (controller area network). In ESCAR.

[36] Hansang Lim, Gyunha Kim, Seungsu Kim, and Dongok Kim. 2019. Quantitative
analysis of ringing in a controller area network with flexible data rate for reliable
physical layer designs. IEEE Transactions on Vehicular Technology (2019).

[37] Stefano Longari, Matteo Penco, Michele Carminati, and Stefano Zanero. 2019.
CopyCAN: An Error-Handling Protocol based Intrusion Detection System for
Controller Area Network. In ACM Workshop on Cyber-Physical Systems Security

& Privacy.
[38] Stefano Longari, Carlo Alberto Pozzoli, Alessandro Nichelini, Michele Carminati,

and Stefano Zanero. 2023. Candito: improving payload-based detection of at-
tacks on controller area networks. In International Symposium on Cyber Security,

Cryptology, and Machine Learning.
[39] Charlie. Miller and Chris. Valasek. 2013. Adventures in automotive networks

and control units. Def Con (2013).
[40] Charlie Miller and Chris Valasek. 2015. Remote exploitation of an unaltered

passenger vehicle. Black Hat USA (2015).
[41] Abdullah Zubair Mohammed, Yanmao Man, Ryan Gerdes, Ming Li, and Z Berkay

Celik. 2022. Physical layer data manipulation attacks on the can bus. InWorkshop

on Automotive and Autonomous Vehicle Security (AutoSec).
[42] Igor Mohor. 2017. CAN Protocol Controller. https://opencores.org/projects/can.
[43] Pal-Stefan Murvay and Bogdan Groza. 2017. DoS Attacks on Controller Area

Networks by Fault Injections from the Software Layer. In International Conference

on Availability, Reliability and Security (ARES).
[44] Pal-Stefan Murvay and Bogdan Groza. 2020. TIDAL-CAN: Differential Timing

Based Intrusion Detection and Localization for Controller Area Network. IEEE
Access (2020).

[45] Sen Nie, Ling Liu, and Yuefeng Du. 2017. Free-fall: Hacking tesla from wireless
to can bus. Black Hat USA (2017).

[46] Sen Nie, Ling Liu, Yuefeng Du, and Wenkai Zhang. 2018. Over-the-air: How
we remotely compromised the gateway, BCM, and autopilot ECUs of Tesla cars.
Black Hat USA (2018).

[47] Shuji Ohira, Araya Kibrom Desta, Ismail Arai, and Kazutoshi Fujikawa. 2021.
PLI-TDC: Super fine delay-time based physical-layer identification with time-to-
digital converter for in-vehicle networks. In ACM Asia Conference on Computer

and Communications Security.
[48] Andrea Palanca, Eric Evenchick, Federico Maggi, and Stefano Zanero. 2017.

A Stealth, Selective, Link-Layer Denial-of-Service Attack Against Automotive
Networks. In Conference on Detection of Intrusions and Malware & Vulnerability

Assessment (DIMVA).
[49] Mert D Pesé, Jay W Schauer, Junhui Li, and Kang G. Shin. 2021. S2-CAN: Suffi-

ciently Secure Controller Area Network. InAnnual Computer Security Applications

Conference (ACSAC).
[50] Andreea-Ina Radu and Flavio D Garcia. 2016. LeiA: A lightweight authentication

protocol for CAN. In European Symposium on Research in Computer Security

(ESORICS).
[51] Stuart Robb and East Kilbride. 1999. CAN bit timing requirements. Motorola

Semiconductor Application Note, AN1798 (1999).
[52] Marc Roeschlin, Giovanni Camurati, Pascal Brunner, Mridula Singh, and Srd-

jan Capkun. 2023. EdgeTDC: On the Security of Time Difference of Arrival
Measurements in CAN Bus Systems. In Network and Distributed System Security

Symposium (NDSS).
[53] Matthew Rogers, Phillip Weigand, Jassim Happa, and Kasper Rasmussen. 2023.

Detecting CAN Attacks on J1939 and NMEA 2000 Networks. IEEE Transactions

on Dependable and Secure Computing (2023).

[54] Sang Uk Sagong, Xuhang Ying, Andrew Clark, Linda Bushnell, and Radha Pooven-
dran. 2018. Cloaking the clock: Emulating clock skew in controller area networks.
In ACM/IEEE International Conference on Cyber-Physical Systems (ICCPS).

[55] Oleg Schell and Marcel Kneib. 2023. SPARTA: Signal Propagation-based Attack
Recognition and Threat Avoidance for Automotive Networks. In ACM Asia

Conference on Computer and Communications Security.
[56] Oleg Schell, Claudio Oechsler, and Marcel Kneib. 2022. Asymmetric Symbol

and Skew Sender Identification for Automotive Networks. IEEE Transactions on

Information Forensics and Security (2022).
[57] Khaled Serag, Rohit Bhatia, Akram Faqih, Muslum Ozgur Ozmen, Vireshwar

Kumar, Z. Berkay Celik, and Dongyan Xu. 2023. ZBCAN: A Zero-Byte CAN
Defense System. In USENIX Security Symposium.

[58] Khaled Serag, Rohit Bhatia, Vireshwar Kumar, Z. Berkay Celik, and Dongyan Xu.
2021. Exposing New Vulnerabilities of Error Handling Mechanism in CAN. In
USENIX Security Symposium.

[59] Khaled Serag, Vireshwar Kumar, Z Berkay Celik, Rohit Bhatia, Mathias Payer,
and Dongyan Xu. 2022. Attacks on can error handling mechanism. In Workshop

on Automotive and Autonomous Vehicle Security (AutoSec).
[60] Jiwoo Shin, Hyunghoon Kim, Seyoung Lee, Wonsuk Choi, Dong Hoon Lee, and

Hyo Jin Jo. 2023. RIDAS: Real-time identification of attack sources on controller
area networks. In USENIX Security Symposium.

[61] Hyun Min Song, Ha Rang Kim, and Huy Kang Kim. 2016. Intrusion detection
system based on the analysis of time intervals of CAN messages for in-vehicle
network. In International Conference on Information Networking (ICOIN).

[62] Ken Tindell. 2020. CAN Bus Security: Attacks on CAN bus and their mitigations.
Technical Report. Canis Automotive Labs.

[63] Ken Tindell. 2020. CANHack. https://github.com/kentindell/canhack.
[64] Ken Tindell. 2020. Three new CAN protocol hacks. https://kentindell.github.io/

2020/01/20/new-can-hacks/.
[65] Ken Tindell. 2022. Running high speed signals through CAN bus wiring. https:

//kentindell.github.io/2022/11/15/canbus-wiring/.
[66] Anthony Van Herrewege, Dave Singelee, and Ingrid Verbauwhede. 2011.

CANAuth-a simple, backward compatible broadcast authentication protocol
for CAN bus. In ECRYPT Workshop on Lightweight Cryptography.

[67] Armin Wasicek, Mert D Pesé, André Weimerskirch, Yelizaveta Burakova, and
Karan Singh. 2017. Context-aware intrusion detection in automotive control
systems. In ESCAR USA.

[68] Haohuang Wen, Qi Alfred Chen, and Zhiqiang Lin. 2020. Plug-N-Pwned: Com-
prehensive Vulnerability Analysis of OBD-II Dongles as A New Over-the-Air
Attack Surface in Automotive IoT. In USENIX Security Symposium.

[69] MarkoWolf, AndréWeimerskirch, and Christof Paar. 2004. Security in automotive
bus systems. In Workshop on Embedded Security in Cars.

[70] Samuel Woo, Daesung Moon, Taek-Young Youn, Yousik Lee, and Yongeun Kim.
2019. CAN ID shuffling technique (CIST): Moving target defense strategy for
protecting in-vehicle CAN. IEEE Access (2019).

[71] Xuhang Ying, Giuseppe Bernieri, Mauro Conti, and Radha Poovendran. 2019.
TACAN: Transmitter authentication through covert channels in controller area
networks. In ACM/IEEE International Conference on Cyber-Physical Systems (IC-

CPS).
[72] Clinton Young, Habeeb Olufowobi, Gedare Bloom, and Joseph Zambreno. 2019.

Automotive intrusion detection based on constant canmessage frequencies across
vehicle driving modes. In ACM Workshop on Automotive Cybersecurity.

[73] Li Yue, Zheming Li, Tingting Yin, and Chao Zhang. 2021. Cancloak: Deceiving
two ecus with one frame. InWorkshop on Automotive and Autonomous Vehicle

Security (AutoSec).
[74] Jia Zhou, Prachi Joshi, Haibo Zeng, and Renfa Li. 2019. Btmonitor: Bit-time-based

intrusion detection and attacker identification in controller area network. ACM
Transactions on Embedded Computing Systems (TECS) (2019).

A Secure Model Recreation Details

Each ECU has a secret key pre-shared only with the monitor. Details
on establishing the key are outside the scope of this paper. Using
these keys, each ECU securely generates and exchanges a random
seed with the monitor when model recreation starts. Using the
seed, pre-shared key, and an agreed-upon pseudo-random function
(PRF), the ECU and monitor generate a session key. Next, using
the seed, session key, and PRF, they generate the same random
sequence. For each calibration message, the ECU uses the next 64
bits of the sequence as its data field. The monitor compares the data
field to the next 64 bits in the ECU’s sequence to check a message’s
authenticity, before using it to create bit timing model.

https://opencores.org/projects/can
https://github.com/kentindell/canhack
https://kentindell.github.io/2020/01/20/new-can-hacks/
https://kentindell.github.io/2020/01/20/new-can-hacks/
https://kentindell.github.io/2022/11/15/canbus-wiring/
https://kentindell.github.io/2022/11/15/canbus-wiring/

	Abstract
	1 Introduction
	2 Background
	2.1 CAN Basics
	2.2 Conventional Remote Attacker Model

	3 Related Work
	4 The ERAM Threat Model
	4.1 Main Capabilities and Features
	4.2 ERAM Attacks
	4.3 Impacts on Existing Defenses

	5 ERACAN Design
	5.1 Architecture and Operation Overview
	5.2 Feature Extraction and Modeling Details
	5.3 Legitimacy Checks
	5.4 Attack Classification

	6 Security Analysis
	7 Performance Analysis
	7.1 Performance Deadlines
	7.2 Memory Overhead

	8 Evaluation
	8.1 CRAM Security Evaluation on Testbed
	8.2 ERAM Security Evaluation on Testbed
	8.3 Security Evaluation on Real Vehicle
	8.4 Performance Evaluation

	9 Benchmark Comparison
	10 Discussion and Limitations
	11 Conclusions
	Acknowledgments
	References
	A Secure Model Recreation Details

