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Abstract

Cooperative perception (CP) extends detection range and sit-
uational awareness in connected and autonomous vehicles
by aggregating information from multiple agents. However,
attackers can inject fabricated data into shared messages to
achieve adversarial attacks. While prior defenses detect object
spoofing, object removal attacks remain a serious threat. Nev-
ertheless, prior attacks require unnaturally large perturbations
and rely on unrealistic assumptions such as complete knowl-
edge of participant agents, which limits their attack success.
In this paper, we present SOMBRA, a stealthy and practical ob-
ject removal attack exploiting the attentive fusion mechanism
in modern CP algorithms. SoMBRA achieves 99% success
in both targeted and mass object removal scenarios (a 90%+
improvement over prior art) with less than 1% perturbation
strength and no knowledge of benign agents other than the vic-
tim. To address the unique vulnerabilities of attentive fusion
within CP, we propose LUCIA, a novel trustworthiness-aware
attention mechanism that proactively mitigates adversarial
features. LucIa achieves 94.93% success against targeted
attacks, reduces mass removal rates by over 90%, restores
detection to baseline levels, and lowers defense overhead by
300x compared to prior art. Our contributions set a new
state-of-the-art for adversarial attacks and defenses in CP.

1 Introduction

Connected and autonomous vehicles (CAVs) are transforming
transportation by making it safer and more efficient [47], and
are predicted to capture 50-90% of the market by 2040 [7,34].
A key technology behind this transformation is cooperative
perception (CP), where CAVs exchange information to
better understand their surroundings [50]. By working
collaboratively, vehicles can detect objects beyond their
own sensor range, reduce blind spots, and perceive occluded
obstacles, enabling smarter decision-making on the road.

In CP, vehicles exchange and aggregate perceptual infor-
mation. Depending on the stage at which data is shared and
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Figure 1: Attention mechanisms in cooperative perception’s
fusion networks can be exploited for attacks and defenses.

fused, current CP systems can be broadly divided into three
categories: early fusion, intermediate fusion, and late fusion.
Among these, intermediate fusion is the dominant choice for
state-of-the-art CP algorithms, as it strikes a balance between
detection accuracy and communication efficiency [68].

To effectively merge messages from multiple vehicles, an
integral part of state-of-the-art (SOTA) intermediate fusion CP
algorithms is the attentive fusion mechanism [19,68]: a DNN
that learns to focus on the most informative parts of the input
features. Through attention weighting, the fusion module
discerns the contribution of CAV’s feature maps to the over-
all perception results, and thus, selectively amplifies or sup-
presses different inputs to maximize the detection accuracy.

However, the increased complexity of CP systems expands
the attack surface of vehicular perception. Recently, attacks
against CP have been demonstrated in which an adversary-
controlled CAV in the network can inject adversarial
messages to mislead the perception of a remote agent [58,72]
(e.g., remove objects otherwise perceivable by the victim)
and cause serious consequences such as collisions [4].
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Nevertheless, existing attacks on CP systems use con-
ventional single-agent adversarial loss functions, while
neglecting the unique vulnerabilities of CP systems that lie
in their fusion process. Hence, such attacks require unreal-
istically large perturbations that can be detected by simple
sanity checks. Furthermore, prior works rely on an unrealistic
assumption. They assume the adversary is connected to
all CAVs working with the victim, allowing the attacker to
estimate the CP outcomes from the victim’s perspective using
identical inputs for the CP algorithms. Such an assumption ig-
nores the real-world scenario of hidden terminal problems in
wireless communication. In such scenarios, the attacker may
not detect the presence of other benign agents connected to
the victim due to limited transmission range, interference [63],
or preference to remain far and covert. Their attack success
is therefore greatly reduced in a more practical setting.

In this work, we propose SOMBRA, the first object removal
attack that exploits the unique vulnerability in the attentive
fusion mechanism of CP, to enhance both the attack success
rates and its stealthiness (i.e., requiring less perturbation),
especially under limited attacker knowledge of other benign
CAVs. As shown in Figure 1, by manipulating the victim’s
attention distribution, the adversary can misdirect the victim’s
focus heavily onto the malicious feature. Our approach de-
parts from conventional, single-agent adversarial losses by
designing an attention-focused loss function that leverages the
interplay between shared feature vectors, attention weights,
and the final fused perception.

On the other hand, existing defenses in CP systems are
reactive. They either validate with additional (yet unverified)
information from the same set of input sources, or compare
across multi-round inference results using partial information.
Therefore, prior defenses have several limitations in terms
of their effectiveness and practicality, including: (1) high
false-positive rates, indistinguishability from benign errors
and ineffectiveness against adaptive attacks [72], (2)
hyperparameter sensitivity and unrealistic prior knowledge
assumption about the attacker [29], and (3) high computation
overhead due to multi-iteration design and information loss
(e.g., randomly discarding benign messages) [29].

To bridge this gap, we propose LUCIA, the first proactive
defense against CP threats by harnessing and improving the
attention mechanisms in SOTA CP systems. Our CP defense
adjusts each agent’s attention to the fused feature map based
on trustworthiness scores derived from a lightweight feature
consistency check. By modulating the focus to more consis-
tent and trusted input, LUCIA can prevent a single compro-
mised source from significantly swaying the fused outcome
with stealthy adversarial manipulations, while maintaining
real-time feasibility and high information utilization rate.

Our contributions can be summarized as follows.

* We design a novel object removal attack SOMBRA against
CP systems that manipulates attention weights to amplify
the contribution of malicious features in the fused CP

result, achieving over 99% success rates in targeted and
mass object removal scenarios, outperforming existing
attacks [29, 58, 72] by more than 90%. Unlike prior
methods, SOMBRA achieves high success rates even when
the attacker is connected only to the victim, without
receiving information from other benign agents.

* We propose a lightweight and proactive trustworthiness-
aware defense Lucia that computes feature-level
consistency scores to dynamically adjust attention
weights. By neutralizing adversarial manipulations
while preserving utilization of cooperative messages
from trustworthy agents, LucIia achieves up to 94.69%
success rates under targeted attacks, outperforming prior
art [29] by up to 91%, and restores perception perfor-
mance to near baseline level for mass object removal
and general spoofing/removal attacks. LuciAa maintains
over 90% success rates against adaptive attacks.

* We evaluate SoMBRA and LucIiAa on four SOTA CP
algorithms [19,28,38, 68] using the benchmark dataset
OPV2V [68]. Compared with prior art [29, 58, 72] in
CP attacks and defenses, SOMBRA demonstrates superior
attack efficacy even with 1% of the perturbation required
by prior methods, while Lucia achieves higher robust
perception accuracy and reduces computation overhead
by over 300x.

Our code is open-source at https://github.com/WiSeR-Lab/
SOMBRA_LUCIA/.

2 Background and Related Work

2.1 Cooperative Perception Systems

Connected and Autonomous Vehicles (CAVs) are au-
tonomous vehicles (AV) equipped with advanced wireless
communication systems that enable them to share information
with other networked vehicles (V2V), infrastructure (V2I),
and devices (V2X) [47]. In addition to the capability of
navigating autonomously based on local sensors, such as cam-
eras and LiDAR, their connectivity enables real-time data ex-
change. This enhances situational awareness beyond the sens-
ing range of a single vehicle, enabling collaborative driving.

Cooperative Perception (CP) enhances the perception
capabilities of CAVs by enabling them to share and fuse
sensor data with nearby CAVs. Depending on the stage at
which perceptual information is exchanged among CAVs
and fused for inference, current CP algorithms broadly fall
into one of the three categories: (1) early fusion, such as
Cooper [9], where raw sensor data (e.g., LIDAR point clouds)
are exchanged and combined, by data concatenation, before
DNN-based feature extraction; (2) intermediate fusion, such
as F-Cooper [8], AttFusion [68], and V2VAM [28] where
spatially-aligned intermediate feature values (e.g., bird’s eye
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view feature) extracted from the sensor data are being shared
and aggregated using DNN-based fusion backbone into a
single feature for inference (as shown in Figure 2); and (3)
late fusion, exemplified by [51], where detection results made
by individual vehicles based on local data are aggregated into
a single set of collective detection results.

However, due to AV system’s stringent requirements for
real-time applicability (e.g., 100 ms end-to-end latency [39]),
early fusion faces challenges from the limited communication
bandwidth offered for V2X systems (e.g., 20 MHz [2]) and
prohibitively large raw sensor data volumes (e.g., 4 MB for
each LiDAR frame [8]). Meanwhile, late fusion suffers from
suboptimal detection performance due to its reliance on local
information [68]. Therefore, recent works have been focus-
ing on intermediate fusion as it strikes a balance between
communication overhead and detection performance [8, 68].

2.2 Related Work

Single-Vehicle Perception Attacks and Defenses. Percep-
tion systems in AVs are vulnerable to adversarial attacks.
In single-vehicle perception, attacks have been extensively
studied, including LiDAR spoofing, where adversaries inject
fake points into point clouds [5, 23], and physically realizable
attacks, such as using a monitor or projector to display adver-
sarial patterns [44,46,64]. Other methods, such as adversarial
trajectories [55,61], manipulate the vehicle’s perception of ob-
ject dynamics by maneuvering along an adversarially crafted
path. On the other hand, single-vehicle defenses typically
validate detected objects by focusing on their physical plausi-
bility or movement patterns. For instance, a misclassification
attack of a person as a car could be detected by observing ob-
ject dynamics and/or attributive features [41,45,71], whereas
spoofed LiDAR points and objects can be identified using oc-
clusion constraints (e.g., LIDAR shadows) [16,56]. However,
such methods rely on cross-validation with the raw sensor
data (which is prohibitively large for real-time transmission
in V2X applications) or physics-based constraints of a single
sensor source, which are ineffective against CP attacks where
remote adversaries inject adversarial perturbations into the
shared messages. We review such existing CP attacks below.

Cooperative Perception Attacks. CP introduces a new threat
model in which adversaries exploit the data-sharing mech-
anism. In contrast to physical sensor attacks [23,64]—which
demand deep knowledge of sensor hardware and are typically
tailored to a specific brand or manufacturer—false data injec-
tion attacks in CP circumvent the physical constraints of sen-
sor attacks, and are more scalable and easier to launch. Conse-
quently, a remote adversary can target surrounding CAVs that
rely on shared features. This distributed nature and reliance
on multi-agent data exchange pose unique risks that remain
largely under-explored compared to single-vehicle scenarios.
Depending on the attacker’s capabilities, existing CP attacks
can be broadly categorized into insider and outsider attacks.

E Feature EE Feature Sharing
! Extractor ! ! and Fusion

CAV(s)

Sensor
Data

Figure 2: Illustration of the intermediate fusion CP pipeline.

In an insider attack, the adversary is an active participant
in the CP system, equipped with valid credentials or physical
access to a compromised vehicle [43]. Tu et al. [58] presented
the first insider adversarial attack on CP systems, where
compromised agents inject perturbations into their shared
intermediate features by adapting the loss function proposed
in single-agent attacks [57]. The attack reduces the victim’s
perception accuracy by introducing missing detections (false
negatives) and spoofed objects (false positives). Zhang et
al. [72] extended this concept by applying the same loss
function at specific regions, allowing the attacker to remove
particular objects or insert spoofed ones perceivable by
the victim. However, their method requires precise prior
knowledge of the targets (e.g., bounding box coordinates)
and demands extensive fabrication on both raw sensor data
and shared features with additional LiDAR point clusters and
unbounded perturbation, respectively. Therefore, the attack
can be defeated by simple sanity checks (e.g., whether values
fall out of range) or sensor integrity defenses [18].

Outsider attacks do not originate from a compromised CAYV,
but instead exploit vulnerabilities in data transmission or
sensor spoofing channels. For example, wireless jamming can
cause the loss of sensing data exchange and CP performance
degradation [33]. However, they cannot achieve subtle
manipulations of the detection results, such as removing
the detection of a single object. Also, even in the extreme
case where all messages shared with the victim are blocked,
the CP algorithm still operates with the genuine input from
the victim’s local sensor. In this case, the perception range
and performance are reduced, yet the results remain truthful.
Another line of work [27] examined how GPS spoofing
can reduce detection performance in CP systems. Their
proposed attack, AdvGPS, primarily causes localization
offsets that lead to mismatches in the shared features and,
consequently, higher false-positive and false-negative rates.
However, the evaluated CP algorithms presume near-accurate
positioning prior to fusion, and the resulting degradation is
only marginally higher than random noise.

Key Observations. Existing CP attacks overlooked two crit-
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Figure 3: Illustration of the hidden terminal scenario.

ical aspects of modern CP frameworks. First, they failed to
exploit the unique designs in CP algorithms, which lie in the
fusion module. This leads to reduced stealthiness or attack
efficacy. Second, except for wireless jamming [33], they as-
sumed the adversary is connected to and can receive messages
from all agents that communicate with the victim, hence hav-
ing the same inputs as the victim to facilitate gradient-based
optimization. This assumption neglects real-world hidden ter-
minal scenarios, as shown in Figure 3. In such scenarios, the
attacker may not detect the presence of other benign agents
connected to the victim due to limited transmission range,
interference [63], or preference to remain far and covert.

Insights from Dot-Product Attention. Recent research in
other domains demonstrated the vulnerability of scaled dot-
product attention to adversarial manipulation. For instance,
Lovisotto et al. [36] showed that conventional gradient-based
attacks primarily focus on value tokens while neglecting the
potential to manipulate attention weights. They proposed an
Attention-Fool strategy that modifies pre-softmax dot-product
similarities and misdirects the attention of all queries to a sin-
gle adversarial key in the model, thereby significantly reduc-
ing accuracy in image classification and detection tasks. Sim-
ilarly, Sharma et al. [53] demonstrated how attention maps in
Visual Question Answering can be exploited to yield targeted
adversarial samples with minimal noise, causing models to
provide incorrect answers by redirecting focus onto malicious
regions. These findings illustrate how attention can become
a critical vulnerability if attackers manage to bias attention
distributions towards particular areas of a single input source.
Based on these insights, we propose the SOMBRA attack,
which targets the core component of CP algorithms, i.e., the
attentive fusion mechanism, to gain two key advantages. First,
by guiding the victim’s attention toward maliciously crafted
features, our method achieves potent object-removal results
with significantly less perturbation (e.g., < 1%), thereby
improving the attack stealthiness. Second, it remains highly
effective even under limited attacker knowledge, mitigating
the need for full observability of all collaborating agents.

3 System and Threat Model

3.1 System Model

We consider a CP system (Figure 2) where each CAV captures
perceptual data using its sensors and extracts intermediate fea-
ture representations using DNNs, which are then shared with

nearby CAVs through wireless communication. Each CAV
combines these features using intermediate fusion algorithms
such as AttFusion [68] and Where2comm [19] that are based
on the attention architecture [60] or its variants, upon which
object detection is performed. The results are then delivered
to downstream modules such as prediction and planning.

3.2 Threat Model

Attacker Capability and Knowledge. We consider an
insider attack scenario, where the attacker poses as a normal
participating CAV with CP model access and capability of
perceptual message exchange. Following existing insider
attack models against CP [58,72], we assume that the attacker
has access to a compromised CAV and can manipulate
the data being signed and transmitted to other CAVs [15].
Such insider attacks represent a recognized threat vector for
modern connected vehicles [49].

We primarily consider a white-box attacker who has knowl-
edge of the CP models and weights, in line with previous
work [58,72]. With such information, the attacker can per-
form gradient-based optimization to generate adversarial per-
turbations. This aligns with standard practice in adversarial
machine learning security analysis, establishing a worst-case
scenario assessment [48]. The white-box assumption, while
strong, is relevant in the automotive context for several rea-
sons. Firstly, CP models can be shared/aligned between man-
ufacturers to ensure interoperability, making them widely
known/accessible [37]. Secondly, models can potentially be
reverse-engineered from captured vehicle hardware, software
updates, or diagnostic interfaces [10,42]. Thirdly, model de-
tails can be leaked through supply chain compromises [49].
An insider attacker having already compromised a CAV in-
herently increases the likelihood of gaining knowledge to
the deployed model [42]. While the white-box assumption
aids SOMBRA’s optimal design and analysis, our evaluations
(Appendix A) show high efficacy (e.g., >90% success) with
transfer attacks, expanding SOMBRA’s threat potential.

Attacker Goal. The primary objective of the adversary is
object removal in the victim’s perception output. We consider
two variants: (1) Targeted Object Removal Attack (TOR): the
attacker aims to suppress the detection of one or more specific
objects in the victim’s final detection (e.g., a particular car
or pedestrian on the victim’s planned path). (2) Mass Object
Removal Attack (MOR): the attacker attempts to suppress as
many otherwise perceivable objects as possible from the vic-
tim’s inference output, which leaves the victim mostly ‘blind’
to surrounding obstacles, posing an immediate safety risk.

4 sowmsra: Attacking Attentive Fusion

We present our methodology for launching SOMBRA against
CP systems. We first present the problem statement and
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discuss the challenge of performing gradient-based attacks in
CP under a realistic threat model. We then review the attentive
fusion mechanism—the core design of SOTA intermediate-
fusion pipelines—and show how an adversary can exploit
it to amplify malicious feature contributions. Finally, we
detail our object removal losses for both targeted and mass
object removal attacks, which are combined with the attention-
boosting loss into single loss functions.

4.1 Problem Statement

Let ¥V = {Vj,...,V,} be the set of CAVs participating in CP,
and let V, € 1V denote the attacker-controlled vehicle, while
V, € V is the chosen victim. At each time step ¢, each CAV
V; generates and shares its local feature map X! € ROW>xH,
Here, C,W,H represent the number of channels, width,
and height of the feature map, respectively. These features
are spatially aligned to a common coordinate, by modern
CP design [68]. Under the benign scenario, the victim V,
fuses the received feature maps and the local feature via an
attentive fusion network ¥F:

Xt =5 ({X3}y cqp, X0) € ROV, (1)

where ¥, C ¥\ {V,} is the set of neighbors transmitting
features to V,. The fused feature X! is then passed to the
inference header [ to obtain the detection results D,

To achieve the attack, the attacker generates and injects
an adversarial perturbation &' into its own feature X!, for the
current time step, based on the victim’s shared feature XV”1
from ¢ — 1 due to transmission delay (@). The perturbation
is computed onboard the adversary’s compromised CAV
leveraging its GPU accelerators. | (@). The perturbed feature
X!+ & is then sent to the victim (€)), where the victim fuses
it with its own feature and other features it receives (@).

2= F (X} ey VKO X). @

which is used for producing the final detection results 2.

Object Removal Objective. For Targeted Object Removal
Attack (TOR), the attacker specifies a subset of objects
Orarger that appear in the victim’s ground-truth scene. The
attacker can estimate such information by applying a
lightweight object detector on X!~! [72]. The goal is to
suppress the targeted objects from the victim’s final detection
D=1(X) 2 Olarget- For Mass Object Removal (MOR), the
attacker aims for min | 9| = min |I(X!)|, which encourages
the victim to overlook as many ground-truth objects present
in the scene as possible.

Challenges. To perform gradient-based attacks and manip-
ulate the victim’s CP output D! = I(X!), the attacker needs
to have all the input features to the victim’s CP algorithm

! Alternatively, an attacker can employ off-board computation resources in
conjunction with the compromised vehicle’s V2X transceiver and credentials.

Benign CAV(s)

@ Receive X!! Authentic

Features

Generate 6* Detected Missing Detection
Object 1 :
LRSS Ly Y
© 5 i
Attacker Victim LA
Fusion & Manipulated
© Send X! + & Inference  Detection Result D,

Figure 4: Stages of SOMBRA.

including X{ and {X}} ;cq, . Previous works have shown that
X! can be effectively approximated using X!~! available
to the attacker by spatial warping [38, 58, 72] or first-order
feature flow [70]. However, existing attacks assumed that the
attacker has access to all the other input features {X /’} jew, the
victim receives, which is unrealistic under a more practical
setting due to potential hidden terminal scenarios [63].
Consequently, these attacks suffer from greatly reduced
attack success and unrealistically large perturbations required
under a limited attacker model. As we detail below, we
address this challenge by exploiting the unique weakness in
CP’s attentive fusion mechanism, which allows us to boost
the impact of the malicious feature, significantly increasing
attack success while with minimal perturbation required.

4.2 Attentive Fusion Mechanism

Most SOTA intermediate fusion algorithms adopt the
attention mechanism [60] or its variant as the fusion
backbone [19, 28, 38, 68] that dynamically weighs each
vehicle’s shared feature map X; € RE*WXH For convenience,
we denote X;(x) € R as the vector at location x € Q in the
feature map X;, where |Q| = WH. Conceptually, a typical
attentive fusion network # computes an attention score
o;(x) € [0,1] for each vehicle V; € {Vi,...,Vy} at each
spatial location x based on the corresponding contribution
to the final detection. Specifically, at each location, the set
of feature vectors from different vehicles are rearranged into
a matrix X(x) = [X;(x),...,Xy(x)]T € R¥*C. The attention
score matrix at this location is then obtained by

A(x) = softmax (X(xz;(gx)T) e RV, 3)

where (i, j)—th entry represents the attention score vehicle V;
assigns to V;. Let (0t (x),..., 0y (x)) be the i-th row of A(x),
then vehicle V;’s fused feature vector at location x becomes

Z o;(x)X;(x), where Zocj(x) =1. @

JEV,U{V,} J

The fused feature map X; € RE*W>H is then obtained by
assembling the fused vectors. The whole fusion process is
efficiently computed using batch computing and paralleliza-
tion at each CAV. By calculating o;(x), the fusion network
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dynamically quantifies the contextual ‘relevance’ of different
vehicles’ messages for each spatial location, which helps
improve situational awareness under benign conditions [68].

Exploiting the Attention Mechanism. An attacker control-
ling V,, can craft a small perturbation 6 such that their feature
X/ (x) = X,(x) + & shapes the victim’s attention distribution
in two ways - (1) Encourage high weights: by subtly crafting
X, + 9, the attacker can increase the attention scores 0t (x) so
that the malicious feature map disproportionately influences
the fused representation. Intuitively, the attention module
interprets X, + 0 as highly ‘informative’ or ‘reliable’, thus as-
signing higher weights to the adversarial message. (2) Dilute
benign features: as ¥ ;0;(x) = 1, amplifying a,(x) reduces
the weights of benign vehicles (oj(x)V; # a), ensuring that
small adversarial perturbations become the dominant signal in
the fusion. A straightforward way to encourage this outcome
is to optimize for an attention-boosting 10ss Ly:

1

Layn = |Q‘

Y ou(x). Q)

xXEQ

Maximizing Ly, encourages the attacker’s feature to appear
more salient at each spatial location as perceived by the vic-
tim, effectively overriding or diluting the contributions from
benign agents and the victim’s own local features.

Attacker Influence Analysis. Under the assumption that

the pre-softmax scores between the victim and any benign
Xy (x)TXj (x)

-7 v e

bounded?, the victim’s attention share to the perturbed at-

tacker feature is upper-bounded by:

agent (or the unperturbed attacker), S, ;(x)

A

O (x) < 2

TeAHN-1 ©

Here, N is the total number of agents participating in the
fusion, and A represents the increase in the pre-softmax
score achieved by the adversarial perturbation 8. Specifically,
A< w where €,y is the L., norm of the perturba-

tion”. The bound shows that the attacker’s influence grows
exponentially with A but decreases linearly as the number
of other agents. SOMBRA exploits this key vulnerability by
efficiently hijacking the victim’s attention to maximize the
adversarial impact. We provide more details in Appendix B.

4.3 Object Removal Loss

Our primary goal is to remove objects from the victim’s final
detection D,, which can lead to severe consequences such as
collisions [4]. We consider two variants: (1) Targeted Object
Removal (TOR) and (2) Mass Object Removal (MOR). In

2The scores are bounded since both the (1) input LiDAR point count and
intensity and (2) feature extraction model weights are bounded.
3The equality holds when the optimization is performed using PGD.

both cases, we employ gradient-based adversarial optimiza-
tion, where the attacker updates according to the gradient of
a loss function Lremoval € { LTOR, LMOR }-

Targeted Object Removal. In a targeted attack, the adversary
selects areas corresponding to a set of target object(s) Oprget
in the scene and attempts to suppress any detection from being
made at these areas. Let K(Orarget) represent the locations
in the feature map that corresponds to the target areas. To
push the model to classify these locations as background
(i.e., no object), we employ a focal loss—like term Lor that
encourages high probabilities of the background class are
assigned to the target areas:

Lror = — Z (1 - Px)ylog(Px% @)

xe R( Otargel)

where py is the predicted probability that location x has no
object, and v is the focusing parameter of the focal loss [32].

Mass Object Removal. For mass removal, the adversary
aims to eliminate as many objects perceivable by the vic-
tim as possible, effectively encouraging an empty detection
output produced by the victim D, = 0. Similar to the tar-
geted approach, we extend the focal loss concept to all spatial
locations in the feature map:

Lyior = — ), (1= px)Vlog(py). ®)
xeQ

In other words, we encourage the prediction of every location
as if it belongs to the background class, so the victim’s per-
ception network becomes confident in ‘nothing there’. This
strategy eliminates the need for object-specific knowledge.

Advantages of Focal Loss. Previous object removal
attacks [57, 58, 72] rely on precise prior knowledge of the
victim’s perceivable objects, such as exact bounding box
coordinates. However, without accurate prior information,
these attacks become unstable (side-effect of creating false
objects near the removal target) or unsuccessful. For instance,
if the initial victim’s prediction does not contain the object
of interest, the gradient becomes zero, making optimization
ineffective.

To overcome this challenge, we adopt the focal loss that
does not require prior knowledge of object bounding boxes.
Also, note that the focal loss is designed to address class
imbalance by down-weighting easy examples and focusing
on hard negatives, making it suitable for our purpose of re-
ducing objectness scores for target areas. In both TOR and
MOR, the modulating factor (1 — p,)? reduces the loss contri-
bution from easy negatives (where p, is close to 1), allowing
the optimization to focus on harder examples (where p; is
lower). It effectively emphasizes locations where the net-
work is uncertain about the background class. Meanwhile, the
logarithmic component log(p,) encourages p, to approach
1 (i.e., maximizing the probability of the background class).
By minimizing Liemoval, the victim’s confidence on obstacle

7392 34th USENIX Security Symposium

USENIX Association



detected at targeted/all areas are reduced, encouraging no
corresponding detections being made as the output.

Combined Loss Function. To fully exploit the attention
mechanism while enforcing object removal, we combine Ly,
and Liemoval 1nto a single loss function:

Ltotal = xattn Lattn + xremoval Lremoval, (9)

where Ayn and Aremoval hyperparameters that balance the two
terms and Lremoval € { LToR, LMOR }- By explicitly increasing
the attention assigned to X, + J, the adversary ensures that
even small perturbations can drastically impact the fused
representation X,, achieving potent object removal without
requiring knowledge of other agents’ data or overly large &
that might be easily detected.

5 Lucia: Harnessing Attention for Trust

Although the vanilla attention mechanisms in SOTA CP algo-
rithms present a unique vulnerability, they can be harnessed in
turn for enhanced adversarial robustness. In this section, we
present our defense Lucia, based on a novel trustworthiness-
aware attentive fusion, which can be embedded directly into
the existing CP fusion pipelines without additional training.
Lucia proactively adjusts each agent’s contribution based
on a lightweight, on-the-fly consistency check of their inter-
mediate features, achieving significantly reduced overheads
and improved effectiveness compared to prior art [29].
Before detailing our proposed methodology, we introduce
existing CP defenses and highlight their key limitations.

5.1 Existing Defenses & Limitations

To prevent direct V2X message alterations, the C-V2X [1]
and IEEE 1609.2 [21] standards adopt cryptographic mech-
anisms for message authentication, yet they do not prevent
false data injection before authentication [3]. Also, existing
V2X-MBDs [59] can only counteract threats for basic safety
applications, and are not easily applicable to advanced CP
(requiring sensor data sharing and fusion). To date, defenses
against false data injection attacks in CP systems remain
under-explored, where existing works can be broadly catego-
rized into consensus-based and consistency-based approaches.

Consensus-Based Defenses. A representative example is RO-
BOSAC [29], which adapts the RANSAC (RANdom SAmple
Consensus) approach to multi-agent perception. ROBOSAC
randomly samples small subsets of agents and fuses their
shared data to generate a detection result; it then compares
this outcome against the ego agent’s local perception to see if
they fall within a predefined similarity threshold. Once such
a detection result is found (e.g., more than 70% of objects
can be matched with the local detection), it is accepted as
the ‘robust’ detection output. Another work CP-Guard [17]

follows a similar RANSAC paradigm and specifically applies
to the semantic segmentation task.

Despite its conceptual appeal, RANSAC-based defenses
suffer from three main drawbacks. First, although mea-
suring the difference between the inference results from
multiple input sources with the trusted local result can help
identify obvious discrepancies caused by untargeted attacks
(e.g., FGSM [14], C&W [6]), they struggle to identify more
subtle attacks such as the removal of single object detections.
Second, these algorithms need to run multiple rounds of
sampling and inference in each perception cycle. Notably, the
sampling budget in terms of the number of iterations required
is exponential with respect to the number of collaborators
demanded. Therefore, it incurs high computational overhead
that is incompatible with strict real-time requirements for
autonomous driving (e.g., 100 ms end-to-end [31]). Third,
it requires multiple a priori hyperparameters such as the
attacker ratio, and suffers from hyperparameter sensitivity.
Such assumptions are unrealistic given that vehicles may
join and leave the network dynamically, and that adversaries
can strategically time their attacks. Also, the dependence
on input parameters makes them brittle such that small
changes in hyperparameters can dramatically shift the
information utilization rate. Not only does it randomly
discard information from other agents, to ensure real-time
feasibility, the algorithm often has to discard all benign
agents’ information only suspecting the presence of a
single attacker. The incurred tradeoff between information
utilization and computation efficiency is challenging to
balance. We present more detailed analysis in Appendix C.

Consistency-Based Defenses. Collaborative Anomaly De-
tection (CAD) [72] introduces the only consistency-based
defense for (LiDAR-based) CP to date. Rather than sampling
random subsets of agents, CAD validates the consistency
between the final detection results and an occupancy map
aggregated from each agent’s local counterpart derived by
a separate point segmentation model on raw LiDAR point
cloud. Specifically, it generates the fused occupancy map by
filtering out conflicted regions across shared occupancy data,
then cross-checks this fused occupancy map against the ego
vehicle’s final detection results to alert suspected anomalies.

Although this technique can alert blatant discrepancies, it
suffers from several limitations. First, the algorithm has a
strong dependency on accurate validation data. However, a
single attacker can forge both the adversarial messages and the
corresponding validation data that deliberately conflicts with
the occupancy maps from other agents. By its design, CAD
is forced to discard conflicted occupancy maps in the final
comparison with the detection, effectively leaving potential
attacked areas unchecked. Second, the additionally required
modules (e.g., LIDAR point segmentation, ground fitting)
are non-trivial to maintain in real-time pipelines and incur
accumulating errors from sensor noise to inference errors,
resulting in significant challenges in distinguishing benign
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errors from adversarial attacks. As a result, CAD can only
detect around 40% object removal attacks and incur up to
60% false alarms [72], while its AUC for object removal
attack detection is about 0.5, indicating its ability to detect
such attacks is comparable to random guessing (see Figure
14 in [72]). Third, CAD does not recover or produce robust
perception results in addition to anomaly detection, limiting
its applicability in the real world.

Key Observations. Both consensus-and consistency-based
defenses are reactive in nature: they require obtaining the
final perception results before attempting to discern abnor-
mal output. In the time and safety-critical application of
autonomous driving, such approaches are difficult to deploy.
By contrast, as we show next, our defense is designed under
fundamentally different principles, which is proactive and
lightweight, and integrated at the feature level-an earlier stage
in the CP pipeline, instead of reactively detecting anomalies
from non-robust inference results. The core insight is that
existing attention mechanisms in CP compare raw feature
vectors across agents, without validating inter-agent consis-
tency, leaving the system vulnerable to modifications from a
single malicious source. By dynamically assessing the trust-
worthiness of each agent and informing the attentive fusion
module accordingly, we can harness it for robust CP algo-
rithm designs. This not only drastically reduces the additional
communication and computation overhead, but also inher-
ently counters the attacker’s influence on the fused feature
and the inference results made thereon.

5.2 Our Defense Methodology

To address the issues in existing CP defenses, we propose
our defense Lucia based on a novel trustworthiness-aware at-
tention mechanism that complements existing CP algorithms
without incurring high overhead or depending on additional
validation data. Figure 5 shows the stages of LUCIA.

Trust Score Computation via Feature Consistency. Each
agent’s shared intermediate feature map is compressed
(e.g., via average pooling) and normalized to reduce dimen-
sionality that mitigates feature misalignment due to benign
sensor error (e.g., localization error) and reduces additional
computation overhead (@). We then compute pairwise L
distances among these compressed representations to mea-
sure how similarly each agent ‘sees’ the environment relative
to others. Agents whose features deviate substantially ac-
cumulate a higher total L; distance. We apply a softmax to
transform these distances into scores and invert the result,
producing a final trust score 7; € [0, 1] per agent (@).

T; = 1 — softmax ({Z 1% —X;||1]j = 1N}> [i] (10)

J#

This process operates entirely on data that the CP pipeline
already exchanges (i.e., the intermediate features), avoiding
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Figure 5: Stages of LucIa.

additional communication overhead.

Incorporating Trust Scores into Attention. We then in-
tegrate 7; directly into the attention module. We multiply
both the logits and the final normalized attention weights
by T; (@). Recall that the original attention score matrix

: _ X(x)X(x)" NxN
is calculated as A(x) = softmax (T) € RVY. Let

T = diag(T3, ..., T,), then the trustworthiness-aware attention
score matrix Ar(x) is calculated by

A(x) = softmax (X(x)x(x)TT/ﬁ) T D
Ar(x) =Ax) 0 (A(x)J) (12)

where © represents elementwise division and J is the matrix
of all ones. Intuitively, even if an adversarial feature initially
has a high raw attention score, a low trust score 7; ensures that
it contributes significantly less to the fused feature (e.g., a trust
score of 0 implies no attention paid to this feature). By weight-
ing attention according to observed cross-agent consistency,
our defense proactively discounts suspicious feature maps
in a single pass, negating the need for iterative or external
validation. Also, the fused feature map remains a weighted
sum of features from multiple agents, where the weights are
normalized as the vanilla model does, yet informed by the
trustworthiness of the participating agents. We detail more
discussions on leveraging feature-level consistency for de-
fense in Appendix D.

5.3 Advantages of Our Defense

Proactive and Low Overhead. Instead of conducting mul-
tiple sampling and partial inferences (like ROBOSAC [29]
or CP-Guard [17]), LucCiA computes trust scores once per
perception cycle and incorporate them into the existing atten-
tion layer. The average-pooling and L; distance calculations
add minimal computational cost, preserving real-time per-
formance without multiplicative increase in inference time.
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Seamless Integration. Lucia modifies only the fusion step,
making it straightforward to deploy in existing intermediate-
fusion frameworks without additional training. There is no re-
liance on specialized LiDAR segmentation or occupancy map
generation, simplifying implementation and maintenance, and
avoiding additional error accumulation.

Improved Information Utilization. Lucia does not discard
entire feature maps based on rigid pre-defined thresholds or
random sampling. RANSAC-based methods’ conservative
random sampling frequently discards a significant portion
of the legitimate data contributed by other agents (e.g., not
collaborating with certain vehicles at all if it suspects just
one attacker in a group). On the other hand, consistency-
based methods suffer from the indistinguishability of benign
errors from adversarial attacks, and the inability to produce
robust perception results as output. As contrast, our method
smoothly modulates attention informed by the trust score,
accommodating natural variations in sensor data without trig-
gering a complete rejection. This balance helps maintain the
benefits of CP while enhancing the robustness of the system.

6 Evaluation

6.1 Experimental Setup

Dataset and Algorithms. We test SOMBRA and LUCIA using
the widely adopted CP dataset OPV2V [68], which is a
large-scale benchmark for V2V perception, collected across
70 diverse scenes from 8 towns in the digital twin simulator
CARLA [11]. It includes 11,464 frames of LiDAR point
cloud data from 2-5 CAV agents and 232,913 annotated 3D
vehicle bounding boxes. We regard the CAVs with the lowest
and second-lowest indices as the victim and attacker vehicles,
respectively. Also, to align with our realistic threat model,
we limit the attacker’s knowledge about other CAVs to only
the victim without access to other benign CAVs messages
that are available to the victim. We evaluate SOMBRA and
Lucia on representative intermediate fusion-based CP
algorithms that achieve SOTA 3D object detection accuracy
(mAP@0.5>0.9) [65] and real-time computation efficiency
(< 100 ms on our testbed): AttFusion [68], Where2comm
(W2C) [19], CoAlign [38], and V2VAM [28], using publicly
available pre-trained weights [65].

Comparison Baselines. We compare SOMBRA with the tar-
geted object removal attack loss used in prior art [57,58, 72].
Their method requires the attacker to have precise prior
knowledge of the target objects’ bounding boxes to generate
adversarial perturbations, for which we supply the ground
truth. Note that to achieve the MOR attack, their attacker
is required to have complete knowledge of all objects in the
scene, which is a significantly stronger assumption than ours.

Lucia is compared to ROBOSAC [29] because it is the only
defense that aims at outputting robust object detection results.

Especially, we assess each defense’s detection accuracy under
benign and attacked scenarios and computation overhead.

Target Object Selection. For TOR, to evaluate the attack’s
effectiveness and generalizability, we randomly select an ob-
ject within each frame to serve as the target for removal,
while considering whether the target is within victim’s Line-
of-Sight (LoS): (1) Objects within LoS: non-occluded objects
that fall within the victim vehicle’s local LiDAR sensor range.
In these cases, the victim has partial local information about
the target. (2) Objects beyond LoS: objects that lie entirely
outside the victim’s sensor range or are occluded by other
obstacles. The victim relies solely on the shared features
from other CAVs to detect these objects. The randomized
selection approach enables a comprehensive evaluation of our
defense, as the attacker must handle a wide variety of target
sizes, distances, and occlusion conditions.

6.1.1 Implementation

Implementation Details. For our attack SomBRA, the
perturbation is optimized via PGD [40] with 10 iterations
and a learning rate € of 0.1. We set Ay = Aremoval = 1,
and Y = 2. Additionally, we show the attack results for
different optimization hyperparameters demonstrating the
advantage of SOMBRA in reducing the required perturbation
strength than the baseline. Note that stealthiness is inversely
proportional to perturbation strength measured by €, where
smaller perturbations produce greater stealthiness.

We integrate our defense Lucia into the fusion backbones
of the evaluated CP algorithms. Specifically, we replace
the standard scaled dot-product attention with our trust
score-modulated variant. For trust score computation, we
apply a 32x average pooling across spatial dimensions,
followed by normalization and the cross-agent consistency
scoring. To test the generalization of our defense to other
attacks, we evaluate it against Basic Iterative Method
(BIM) [25], a white-box adversarial attack that simulta-
neously removes and spoofs objects at random. BIM is
configured with a learning rate of 0.1 and 10 iterations. For
comparison with ROBOSAC [29], we followed the official
implementation and supply the algorithm with ground-truth
attacker ratio (single attacker) and the same hyperparameters
as reported by the authors. The sampling budget is set to 10.

Testing Hardware. To demonstrate system deployment and
obtain performance measurements on real vehicles, we ran
the experiments with a DataSpeed vehicle testbed running a
NUVO-8208GC computer [22], equipped with Intel Xeon E-
22278GE CPU, NVIDIA RTX 2080-Super GPU and Ubuntu
20.04, as shown in Figure 11. On our testbed, the PGD
perturbation optimization takes 51.21 & 15.14 ms per frame
with PyTorch 2.4.1 and CUDA 11.8, fitting within one typical
LiDAR cycle [72]. The OPV2V dataset is loaded through
developer I/O to emulate sensor input and message exchange.
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6.1.2 Evaluation Metrics

Attack Success Rate (ASR). The ASR quantifies the propor-
tion of successful attacks over the total number of frames N in
the dataset. It measures the attack’s effectiveness in achieving
specific goals. The ASR is calculated as:

M=

ASR(C) =

1

(D EC), (13)

I
-

where () is the indicator function that evaluates to 1 if the
detections D; satisfy the attack objective related condition C,
and O otherwise. This metric is agnostic to specific down-
stream modules, focusing solely on the attack effectiveness
against the perception system. For TOR, an attack succeeds
if the target is not detected (i.e., no detection has a non-zero
Intersection-over-Union (IoU) with the target), and the num-
ber of false positives FP; (i.e., detections that have zero IoU
with any ground truth object) is within a threshold TroR:

D; E Cror <= (IoUpax = 0) A (FP; < tror).  (14)

Here, IoUpx is the maximum IoU between any detected
bounding box and the ground truth bounding box of the tar-
get object in frame 7, and TroRr is a small threshold to limit
false positives that might interfere with the attack’s objective
(e.g., in the way of a potential collision trajectory between
the target and the victim). Ideally, the rate of false positives
should not exceed that when no attack is performed. Since
FPR = 2 /frame on OPV2V for SOTA CP algorithms under
the benign case, we consider Ttor = 2.

For MOR, an attack succeeds if the total number of detec-
tions |2 in frame i is within a threshold Ty,

D; E Gvor <= | D] < Tmor (15)

One can set Tplinding to 0 to evaluate complete blinding or 1
allowing a minimal number of detections to be made. For
convenience, we denote the ASR setting Tyor to 0 and 1 as
ASRY,0r and ASR}or, respectively.

We also report the Object Removal Rate (ORR), which
measures the effectiveness of the attack in reducing the num-
ber of detected objects relative to the ground truth:

1Y | Dy
ORR = — " max (0,1— ) (16)
N,’:] |gt|

where | G;| is the total number of ground truth objects in frame
i. The ORR ranges between 0 to 1, representing the average
proportion of ground truth objects missed.

Defense Metrics. For defense against TOR, we define De-
fense Success Rate (DSR) as the fraction of frames for which
the target object remains correctly detected (with IoU > 0) de-
spite the attacker’s manipulations. For defense against MOR,
where the attacker aims to blind the victim by removing all or

Table 1: Results on targeted object removal. Notably, Som-
BRA achieves consistent and high ASRs, and maintains higher
mAP. This is because it selectively removes the target without
the side effect of introducing large numbers of false positives
like the baseline method, thereby maintaining stealthiness.

| Within Victim LoS Beyond Victim LoS

‘ No Attack ‘ Baseline ‘ SOMBRA ‘ Baseline ‘ SOMBRA
mAP mAP mAP mAP mAP
Model ‘ @05 ‘ ASRT @05 ‘ ASRT @05 ‘ ASRT @05 ‘ ASRT @0
AttFusion 091 15.26% 0.28 99.61% 0.90 45.39% 0.49 98.79% 0.90
CoAlign 0.91 1.07% 0.05 99.12% 0.89 2.93% 0.09 98.39% 0.88
w2C 091 2.58% 0.11 | 78.21% 0.20 799% 015 | 71.76% 0.20
V2VAM 0.93 99.80% 0.01 97.37% 0.81 93.71% 0.13 97.22% 0.82

Table 2: Results on mass object removal. For AttFusion
and CoAlign, SOMBRA achieves near complete removal of
all objects perceivable by the victim, exceeding the baseline
method by over 90% in ASRs and ORRs.

Attack ‘ No Attack ‘ Baseline ‘ SOMBRA

Model | ORR | ASR{jop T ASRyor T ORRT | ASRYor T ASRop ORR?
AttFusion 3.47% 0.05% 0.15% 0.15% 99.95%  100.00%  100.00%
CoAlign 2.28% 0.00% 0.00% 2.13% 99.76 % 100.00% 99.99%
w2C 3.68% 0.00% 0.15% 21.90% 55.24% 76.67% 94.26%
V2VAM 3.12% 99.95% 100.00% 100.00% 100.00 % 100.00% 100.00 %

most objects, we measure the defense’s capability to preserve
detection via ORR, where smaller ORR indicates the defense
prevents large-scale object removal.

Mean Average Precision (mAP): We report mAP, a metric
used to measure the overall accuracy of object detectors, at
0.5 and 0.7 IoU, which computes the average precision of
producing detections that match ground truths.

6.2 Evaluation of Attacks

Targeted Object Removal (TOR). Table | shows the attack
results on TOR under the two visibility scenarios, where Som-
BRA maintains high ASRs in both within-LoS and beyond-
LoS scenarios when no defense is present. For instance,
AttFusion yields 98-99% ASR in both cases, while CoAlign
and V2VAM also remain above 97%. In contrast, the base-
line method [72] shows lower ASRs overall (e.g., 15.26% vs.
99.61% for AttFusion within-LoS). Notably, it also exhibits
a side effect of reduced mAP due to unintended injection of
additional false positives (extra bounding boxes) in regions
unrelated to the target. This broader disruption increases the
detectability of the attack itself. Our approach, by compari-
son, removes the chosen target object without notable harm
to the detection of other objects, making the attack stealthier.

Mass Object Removal (MOR). Table 2 reports both the
attack success rates ASRR,IOR (strict zero detections) and
ASR}0 (at most one detection), alongside ORR—the pro-
portion of ground-truth objects that vanish from the victim’s
detections. For AttFusion, SOMBRA reaches 100% success
in both ASRlleOR and ORR, versus negligible baseline values.
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Figure 6: Example of detection results and victim’s attention maps to others, under our attack and defense. (Blue bounding boxes:
ground truth objects, green bounding boxes: detected objects. Attention maps top: victim, mid: attacker, bottom: benign agent.)
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Figure 7: ASR and ORR increase with higher perturbation
strengths, while SoMBRA achieve higher ASR and ORR
compared to prior art with (over 100x) smaller perturbation.

Even W2C, which exhibits a somewhat robust baseline,
experiences a jump from effectively 0% success (baseline) to
55-77% for ASRY;or and ASR},or. These sharp increases
confirm that attentive fusion can be exploited to remove all
objects in the scene via subtle yet powerful perturbations.
Figure 7 extends these findings by showing how less per-
turbation (lower €) is required for our method to achieve high
attack efficacy, whereas the baseline needs (over 100x) more
perturbation strength to approach similar removal rates. Both
ASRY;or 2nd ORR climb to near 100% significantly faster
than the baseline, highlighting our approach’s efficiency.

Ablation Study. The incorporation of the attention-boosting
loss plays a crucial role in enhancing the effectiveness of
SoMBRA while adhering to realistic perturbation constraints.
To assess the impact of the attention-boosting loss component,
we conduct an ablation study comparing the performance of
our attacks with and without the attention manipulation. Fig-
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Figure 8: Ablation on the attention-boosting loss (€ = 0.25).
Including the attention-boosting loss increases both the ASRs
and ORRs, especially when the number of agents increases.

ure § examines the impact of explicitly boosting the attacker’s
attention term by comparing our MOR results with (solid
lines) and without (dashed lines) the attention-boosting loss.
Across all four models, enabling the attention-boosting term
yields consistently higher ASRY; and ORR as the network
size increases from 2 to 5 agents. Notably, W2C exhibits
the sharpest decline when attention boosting is disabled—its
ASRR,[OR drops from nearly 1.0 to below 0.8 at five agents.
These results underscore that shaping the victim’s attention
distribution is crucial for maintaining high removal rates, even
in scenarios with more cooperating agents.

6.3 Case Study: High-Density Traffic Scenario

To assess the scalability and robustness of SOMBRA in extreme
conditions, we evaluate its performance in a high-density ‘traf-
fic jam’ scenario involving 50 collaborating CAVs at a busy in-
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Table 3: SoMBRA maintains high ASR and ORR in high-
density traffic jam scenario with 50 CAVs, resisting dilution
of attention paid to attacker due to increased number of agents.

Attack ‘ No Attack ‘ Baseline SOMBRA

Model | ORR | ASRYyopT ASRYopT  ORRT | ASRYopT  ASRYor T ORRT
AutFusion 39.80% 0.00% 0.00%  56.89% 47.82% 8696%  99.28%
CoAlign 10.95% 0.00% 000%  5942% | 100.00%  100.00%  100.00%
w2C 24.59% 0.00% 0.00%  28.26% 0.00% 000%  71.01%
V2VAM 1.79% 0.00% 3333%  97.46% | 100.00%  100.00%  100.00%

tersection, with the same attack hyperparameters. This setup
is designed to test the attack’s effectiveness as the number of
participating agents N grows significantly, simulating a chal-
lenging scenario for the attacker due to naturally diluted at-
tention. Details on this customized dataset are in Appendix E.

Impact of High Agent Density. As the number of agents
increases in dense traffic with limited Field-of-View overlap,
the contribution of each individual benign agent to the fused
feature map tends to diminish. Table 3 shows the baseline
ORR under no attack, indicating the percentage of ground
truth objects missed even without adversarial interference.
For models like AttFusion (39.89% ORR) and W2C (24.59%
ORR), this inherent information loss is substantial. The atten-
tive fusion mechanism naturally assigns lower weights to each
agent as N grows, diluting the signals from individual benign
vehicles, which can degrade overall perception performance.

Attack Performance. Despite the challenging scenario,
Table 3 demonstrates that SOMBRA remains highly effective,
outperforming the baseline attack across all tested CP models.
For instance, on AttFusion, SOMBRA achieves a 99.28%
ORR and an 86.96% ASR]{AOR, compared to the baseline’s
56.89% ORR and 0% ASR. Similarly, for CoAlign and
V2VAM, SoMBRA achieves near-complete object removal
(100% ASR/ORR). Even for W2C, where SomBRA does not
achieve complete removal of all objects, it still dramatically
increases the ORR from 28.26% (baseline attack) to 71.01%.
This indicates that by directly manipulating attention weights,
SoMBRA can effectively counteract the signal dilution effect
that hampers baseline attacks in dense environments.
Intriguingly, V2VAM exhibits the best benign performance
(lowest ORR at 1.79%) yet is highly susceptible to SOMBRA
(100% ASR/ORR). This vulnerability stems from its unique
design that incorporates an agent-wise max-out operation
added to the fused feature, which, while potentially preserving
strong benign signals, can be readily hijacked by a dominant
adversarial signal from SoMBRA. This highlights a fundamen-
tal trade-off in CP fusion design between robustness against
signal dilution and vulnerability to attention manipulation.

Adversarial Signal Propagation Analysis. In CP, higher at-
tention scores imply higher contribution of the adversarial sig-
nal to the victim’s final fused feature. To understand how SoM-
BRA maintains its influence as N grows, Figure 9 visualizes
the average attention score the victim assigns to the attacker.
The results show that incorporating the attention-boosting
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Figure 9: Victim attention paid to attacker in the traffic jam
scenario, where the incorporation of attention-boosting loss
ensures that the malicious signal dominates the attention share
and propagates effectively through the attentive fusion net-
work. Attacks without attention-boosting loss get diluted
attention closer to the expected average of 1/N.

loss enables the attacker to sustain significantly higher atten-
tion scores compared to omitting this loss term. Even with 50
agents, SOMBRA with L, ensures the attacker hijacks sub-
stantial attention (e.g., >0.25 for € = 0.01, >0.9 for ¢ = 0.1),
preventing the adversarial signal from being diluted. This
sustained attention directly translates to the high attack suc-
cess, reinforcing the central role of attention manipulation in
SoMmBRA’s effectiveness, especially in large-scale CP systems.

6.4 Evaluation of Defenses

Defense Against TOR. Table 4 demonstrates the perfor-
mance of Lucia and ROBOSAC across different target vis-
ibility scenarios. Lucla achieves consistently higher DSR
compared to ROBOSAC. For instance, in the beyond-LoS sce-
nario with CoAlign, DSR increases from 1.51% (ROBOSAC)
to 59.97% with our defense. Similarly, AttFusion improves
from 1.46% to 52.75% for beyond-LoS. This indicates that
our defense effectively excludes adversarial features while
preserving cross-agent consistency. For beyond-LoS scenar-
ios, where targets can only be detected through CP, remain
particularly challenging for ROBOSAC. Lucia, however,
achieves significantly higher DSR and maintains strong mAP.
For example, W2C improves from 41.19% DSR (ROBOSAC)
to 71.92% with our defense while also achieving higher mAP.
ROBOSAC struggles for TOR due to its design that accepts a
detection result if it falls within a predefined similarity thresh-
old with local perception. It incurs a rigid tradeoff between
trust and distrust that either makes it vulnerable to subtle
manipulations by one adversarial source or denial of collabo-
ration even under benign errors.

Defense Against MOR. Table 5 shows the defense effective-
ness under the MOR attack. Lucia significantly reduces ORR
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Table 4: Defense results on targeted object removal. In both visibility cases, LUCIA achieves notably higher DSRs compared
to ROBOSAC, indicating it better restores the detection of the target object under attacks. When the perception of a single object
is adversarially manipulated, ROBOSAC’s fail to identify the anomaly as it is based on a predefined result similarity threshold.

Target Visibility | Within Victim LoS | Beyond Victim LoS

Defense ROBOSAC Lucia ROBOSAC Lucia

Model ‘ DSR?1 mAP@0.5 mAP@0.7 ‘ DSRT mAP@0.5 mAP@0.7 ‘ DSR?T mAP@0.5 mAP@0.7 ‘ DSR1 mAP@0.5 mAP@0.7
AttFusion 3.66% 0.89 0.78 93.95% 0.84 0.72 1.46% 0.89 0.78 52.75% 0.84 0.72
CoAlign 3.17% 0.88 0.80 94.93% 0.85 0.76 1.51% 0.88 0.79 59.97 % 0.85 0.76
‘Where2comm 81.67% 0.71 0.46 94.69 % 0.85 0.66 41.19% 0.70 0.45 71.92% 0.85 0.65
V2VAM 7.11% 0.81 0.66 85.86% 0.82 0.76 2.44% 0.82 0.66 37.68% 0.82 0.76

Table 5: Defense evaluation results for mass object removal.
Lucia achieves lower ORR while restoring higher overall
detection performance than ROBOSAC.

Method | No Defense | ROBOSAC | Lucia

mAP mAP mAP mAP mAP mAP
Model ORR @05 @07 ORRF @os @o7| RV @os @07
AttFusion 100% 0 0] 1052% 071 055 ]| 752% 084 0.72
CoAlign 99.99% 0 0| 803% 072 059 | 573% 085 0.76
w2C 94.26% 0 0| 565% 075 051 | 452% 085 0.65
V2VAM | 100.00% 0 0] 1297% 077 0.63 | 19.09% 082 0.76

Table 6: Defense evaluation results for BIM attack. Lucia
restore the overall detection performance and achieves con-
sistently higher mAP than ROBOSAC.

Method | No Defense | ROBOSAC | Lucia
Model mAP mAP mAP mAP mAP mAP
@0.5 @0.7 @0.5 @0.7 @0.5 @0.7
AttFusion 0 0 0.71 0.55 0.84 0.72
CoAlign 0 0 0.72 0.59 0.85 0.76
Where2comm 0 0 0.75 0.51 0.85 0.65
V2VAM 0 0 0.77 0.63 0.82 0.76

compared to ROBOSAC. For AttFusion, ORR drops from
100% (no defense) and 10.52% (ROBOSAC) to 7.52% with
Lucia. Similarly, CoAlign achieves 5.73% ORR, compared
to 8.03% for ROBOSAC. This demonstrates our defense’s
ability to preserve the majority of objects in detection out-
puts, even under severe adversarial conditions. Our defense
consistently restores mAP values to levels approaching the
benign baseline. For instance, W2C achieves 0.85 mAP@0.5
with our defense compared to 0.75 for ROBOSAC, showing
superior robustness against object removal.

Generalization to Other Attacks. Table 6 shows the results
of Lucia in untargeted attacks using BIM, where the attacker
performs object spoofing and removal simultaneously. For all
models, mAPs with our defense are consistently higher than
those with ROBOSAC, similar to the results from MOR. This
indicates that our defense generalizes and defends against
other types of attack including object spoofing attacks.

Defense Robustness. Note that we tested our defense against
attacks where the perturbation is optimized with 10 iterations
and various different learning rates € ranging from 0.01 to

ROBOSAC °

Ours )I—b-w

-

1072 107t 10°
Time (s)

Figure 10: Per frame computation overhead of defenses on
our autonomous vehicle testbed. Our defense incurs 300x
less computation overhead than prior art.

1. Results remain consistent across these settings including
where € = 0.01, demonstrating the robustness of our method.
Upon investigation, our defense consistently identified the
attacker with a trustworthiness score of 0 and assigned a trust-
worthiness score of 1 to benign agents, achieving 100% TPR
and 0% FPR across all evaluations. This is reflected in Fig-
ure 6, where the victim’s attention paid to the attacker, when
our defense is implemented, is O across all areas due to a zero
trust being assigned to the attacker. Unlike ROBOSAC, which
suffers from iterative sampling and often reduces to single-
vehicle perception, our defense maximizes the information
available by excluding only the attacker and neutralizing the
adversarial feature efficiently. This ensures higher detection
accuracy while maintaining computational efficiency.

Computation Overhead. Figure 10 highlights the com-
putational efficiency of Lucia compared to ROBOSAC,
on our real-world autonomous vehicle testbed. Lucia
maintains tightly clustered inference times around 0.001
seconds, introducing only negligible computational overhead.
ROBOSAC incurs significantly higher additional overhead
to the system, ranging from 0.3 to 1 seconds, which is orders
of magnitude slower than Lucia, due to its iterative sampling
mechanism. This variability and high overhead make it
unsuitable for time-critical applications, while our defense
consistently operates well within the 100 ms latency budget
required for autonomous driving [31].

6.5 Defense against Adaptive Attacker

In addition to standard attacker models, we evaluate the
strongest adaptive attacker under our threat model. We con-
sider the attacker to be aware of the defense and aims to
minimize the L; distance between the perturbed message
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Table 7: Defense evaluation results for adaptive attacks. Lu-
CIA remains resilient against adaptive attacks, that it maintains
high DSR against target removal and low ORR for mass re-
moval, and restores the overall perception performance.

Attack Target Object Removal Mass Object Removal
mAP mAP mAP mAP
Model DSRT @05 @07 ORRY @os @07

AttFusion  86.74% 0.84 0.72 7.23% 0.84 0.72
CoAlign 87.47% 0.86 0.76 8.84% 0.82 0.73
wacC 90.35% 0.85 0.65 4.53% 0.85 0.65
V2VAM 55.73% 0.86 0.83  52.25% 0.42 0.39

X! + & with the victim’s feature X| to increase its consistency
hence trustworthiness score. Specifically, we assume that
the attacker gains access to the victim’s exact feature map
X! in real-time and substitutes its own feature X! = X’. To
craft adversarial perturbations, the attacker employs PGD op-
timization with a small learning rate € = 0.01 for 10 iterations
based on the exact same feature used by the victim.

Table 7 presents the defense results under this adaptive
attack. Lucia maintains robust performance. For instance,
AttFusion still achieves an 86.74% DSR in TOR and a low
7.23% ORR for MOR. The average trust score assigned to
the adaptive attacker remains close to zero (e.g., < 0.001 in
AttFusion, < 0.08 in CoAlign), indicating that while the at-
tacker’s feature mimics the victim’s state, the inconsistency
caused by the minimum perturbation makes it fail to blend in
sufficiently to avoid down-weighting by the defense. Interest-
ingly, V2VAM appears to be more subject to attacks (either
adaptive or non-adaptive) and harder to defend. We provide
discussions on the robustness of V2VAM in Appendix F.

7 Discussions and Future Work

Comparison with RANSAC. Lucia shares conceptual
parallels with RANSAC-based methods, as both approaches
implicitly determine the ‘level of collaboration’ with other
agents. Specifically, the subset sampling operation in
RANSAC-based methods is equivalent to a random subset
of agents being assigned trust scores of one and zero for
excluded agents. Such a binary inclusion rule inherently
discards the contributions of randomly excluded agents
entirely. In contrast, our framework is more general and uses
soft trust scores to scale each agent’s contribution dynam-
ically. This approach accommodates more informed and
subtle ways to determine these scores beyond random binary
assignment. Yet, these two paradigms have the potential for
a synergetic integration. We will explore possible interplay
and multi-layered trust defenses as future work.

Limitations. Our evaluations focus on scenarios with a sin-
gle compromised vehicle. While this aligns with the scope
of many prior studies [27,57, 72], real-world deployments
may face coordinated attacks involving multiple adversaries.

While existing CP defenses [29, 72] struggle against single
attackers, as we detail in Appendix C, extending our defense
to handle collusion among multiple attackers is an important
direction for future work.

The evaluation is conducted using our real-world vehi-
cle testbed, however, the input is based on the benchmark
dataset OPV2V [68] collected with the digital twin simulator
CARLA [11], which captures diverse yet simulated condi-
tions. Real-world inputs introduce additional challenges such
as dynamic traffic densities, environmental noise, and inter-
mittent communication failures. Nevertheless, existing real-
world CP benchmark datasets either has exclusive access [69]
or only involves two CAVs [67]. Therefore, further valida-
tion in field deployments or emerging real-world datasets is
necessary to evaluate performance under such complexities,
especially in the setting of heterogeneous CP systems.

Potential Software/Hardware Security Controls. While
SOMBRA assumes that the attacker bypasses message authenti-
cation using compromised credentials, certain platform-level
security measures might hinder such attacks. Technologies
such as trusted execution environments (TEEs) [18] could
be used to protect the integrity and confidentiality of the CP
models. If the model parameters and critical computations are
isolated within a TEE, obtaining the white-box knowledge
required by the attacker becomes harder. Additionally, se-
cure boot mechanisms [52] and runtime integrity monitoring
could help detect unauthorized modifications [24]. However,
designing and deploying such defenses effectively against a
determined insider attacker who has already compromised the
host system remains an active area of research [49], as TEEs
themselves can have vulnerabilities [72], and system-level
compromises might bypass monitoring. Developing a robust
security platform specifically tailored for CP systems is a
crucial direction for future work.

8 Conclusion

We explore how attention mechanisms—the core component of
cooperative perception (CP) systems—can be exploited by at-
tackers, but also how it can be harnessed for practical defenses.
We present SOMBRA, a highly effective and stealthy object
removal attack on CP, and LuclIa, a lightweight defense mech-
anism that proactively mitigates adversarial features. Our
evaluations on four state-of-the-art CP algorithms demon-
strated that SOMBRA surpasses existing methods by over 90%
in attack efficacy, consistently achieving above 99% success
in both targeted and mass object-removal scenarios—while
requiring 1/100 the perturbation strength of prior work. Mean-
while, Lucia achieved up to 94.93% success in blocking tar-
geted removal attacks, reducing mass removal rates by more
than 90%, and cutting defense overhead by more than 300 x.
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Ethics Considerations

CP systems are integral to the future of autonomous vehicles,
and their success directly impacts road safety. While we de-
velop effective attacks, our understanding of the unique design
of CP systems enables us to develop and strengthen defensive
strategies, ensuring that CP systems are safer for real-world
deployment, which is the goal of this work. All evaluations
are conducted using benchmark dataset under controlled in-
vehicle environment, ensuring no harm to public systems. By
demonstrating both vulnerabilities and effective defenses, we
contribute to improving safety in the critical application of
automated driving. The results presented in this work under-
score the deployability of our defense in resource-constrained
environments and its relevance to industry and regulators.

Open Science

In compliance with the open science policy, our research
exclusively uses the publicly available benchmark dataset
OPV2V [68] and our customized case study data in the same
format, with the corresponding pre-trained models released
by the authors [65]. Moreover, to enable full transparency
and facilitate future research, we open-source our implemen-
tation (including scripts for data preprocessing, attack gen-
eration, and defense integration) along with instructions to
replicate our results. This ensures that the broader commu-
nity can independently validate, build on, and extend our
work. Our code and the collected case study dataset [62]
are permanently available at: https://doi.org/10.5281/
zenodo.15523768.
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Appendix A Transfer Attack

To further assess the practicality and robustness of SOMBRA,
particularly in scenarios where the attacker may not possess
exact knowledge of the victim’s deployed model (a black-box
setting), we evaluate its transferability. In a transfer attack,
adversarial perturbations are generated using a known surro-
gate model (source) but are then applied against a different,
potentially unknown model used by the victim (destination).

Experimental Setup. For each source model, we generate
adversarial perturbations using SOMBRA under white-box as-
sumptions with the same optimization hyperparameters in
Section 6. These generated perturbations are then added to

Table 8: Transfer attack results, where SOMBRA demonstrates
high transferability across state-of-the-art CP models

Destination Model ‘ AttFusion CoAlign ‘Where2comm V2VAM

SourceModel | ASRjjor T  ORRT | ASRfioz?  ORRT | ASRyx T  ORRT | ASR}opt  ORRT

99.85% 99.99%
99.76% 99.99%
53.46% 94.15%
99.95% 100.00%

99.66% 99.98%
99.81% 99.98%
55.24% 94.26%
99.95% 100.00%

99.71% 99.97%
99.66% 99.98%
52.05% 93.95%
100.00% 100.00%

CoAlign 99.81% 99.99%
‘Where2comm 52.14% 93.72%

AttFusion 99.95% 100.00%
99.95% 100.00%

V2VAM

Figure 11: Our vehicle testbed used for evaluation.

the attacker’s feature map and transmitted to a victim vehicle
assumed to be running one of the four models.

Analysis. The results in Table 8 indicate that SOMBRA, by tar-
geting the fundamental attention mechanism, generates highly
transferable adversarial examples. Perturbations crafted using
AttFusion, CoAlign, or V2VAM as source models achieve
near-perfect MOR success (>99% ASRR,IOR and ORR) when
applied against any of the other three models, demonstrat-
ing robustness in black-box settings. The performance us-
ing Where2comm as a source model is lower, suggesting its
learned features or attention patterns might be less general-
izable, although it still achieves a high ORR (>93%) when
transferred. Conversely, Where2comm as a destination is
still highly vulnerable to attacks generated from the other
three models. The minimal difference between diagonal
(white-box) and off-diagonal (black-box) results for the top-
performing models underscores the practical threat posed by
SOMBRA, as precise knowledge of the victim’s model is of-
ten not required for a successful attack. This transferability
reinforces the findings discussed in Section 3 regarding the
feasibility of the attack beyond strict white-box assumptions.

Appendix B Derivation of Attacker Influence
Bound

This section provides a detailed derivation for the upper bound
on the attention score o, (x) assigned by a victim vehicle V,
to an attacker V,, as presented in Eq. 6.

We start with the definition of the attention score com-
puted via scaled dot-product attention for the victim vehicle
V, focusing on agent V; at spatial location x:

o exp(Su()
oj(x) Yo exp(Su(x))

where N is the total number of participating agents, and S, (x)
is the pre-softmax score between the victim’s feature vector

a7
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X, (x) and agent k’s feature vector X;(x):

Xy ()" X (x)
VC

Here, C is the number of channels in the feature vectors.

Let V, be the attacker, who modifies their feature vector
to X (x) = X, (x) + 8, where 3 is the adversarial perturbation.
The victim V, receives X/ (x) from the attacker and benign
features X;(x) from other agents j # a. The attention score
the victim assigns to the attacker is:

exp(Sy, (%))

Ola(x) = exp(S1,(x)) + X j2qaexp(Syj(x)) )

S (x) = (18)

_ X" (Xa(0)+8) _ X8
where S(,a(x) = T = Sm(x) + T

We make the following assumptions: (1) The scaled dot-
product similarity between the victim and any other agent
Jj (including the victim itself, j = v, and the attacker before
perturbation, j = a) is bounded: S, ;(x) < B for all j, which
holds due to bounded (a) LiDAR point count and intensity,
and (D) feature extractor weights. (2) The attacker uses PGD
optimization to craft the perturbation & with the goal of maxi-
mizing the victim’s attention towards the attacker, subject to
a perturbation constraint Le: ||8]|cc < €pmax-

Under the L., constraint ||8||. < €uqx, the term X, (x)78
is maximized when 8 = €, - sign(X, (x)). In this case, the
maximum value is:

Xy ()C)T8 =X, (X)T(emax -sign(X,(x)))

[18]|e0 <Emax

C
= Emax Z |Xv,c(x)| = SmaxHXv(x)”l (20)

c=1

where || X, (x)]|; is the L; norm of the victim’s feature vector

X, . .
Emax Xy () represent the increase in the

at location x. Let A =
scaled dot-product similarity due to the optimally crafted per-

turbation. Then, the similarity score for the attacker becomes:

X,(x)78
VC

where we use the bound P for the original similarity S, (x).
Now, we substitute these into the softmax expression for

. - exp(B+A4)
O (%): 0a(X) ¥ ST Y e oxp (5 )

we can approximate the summation term:

Y exp(Si(x) < Yexp(B) = (N—1)eP  (22)
iZa =

Sha(x) = Sya(x) + <B+A 1)

. Using assumption 1,

This assumes that all other N — 1 agents (benign agents and
the victim itself) have roughly the same baseline similarity B
with the victim. Plugging this back, we get:

Bt
16 I e — 23
%) = B e =

o
EY

0.8
0.6

0.6
0.4

Attention to Attacker

0.2 0.4

0.2

Figure 12: Theoretical upper bound of attention paid to at-
tacker (0y,), with p =5,C = 384.

Factoring out ¢? from the numerator and denominator yields
the final approximate bound:

A

O (x) € ——

e 24
T eA+N-1 @4

where A = Emal Xl

Discussion. This derived bound provides insight into how the
attacker’s influence scales. The term e shows the exponen-
tial dependence on the perturbation’s effectiveness (A), which
itself depends on the allowed perturbation magnitude (€,4x),
the victim’s feature vector’s magnitude (|| X, (x)|1), and in-
versely on the square root of the feature dimension (v/C).
The N — 1 term in the denominator reflects the dilution effect
from other participants; as N increases, the attacker needs a
larger A to maintain the same level of attention. SOMBRA’s
attention-boosting loss term (Lg,) is explicitly designed to
maximize the attacker’s attention share, effectively maximiz-
ing A during optimization, thus making the attack potent even
when N is large, as demonstrated empirically in Section 6.3
and Figure 9. This analysis underscores the criticality of the
attention mechanism as an attack vector in CP systems.

Appendix C Hyperparameter Sensitivity of
RANSAC-Based Defenses

As the representative RANSAC-based defense for CP, RO-
BOSAC’s performance is heavily influenced by its hyperpa-
rameters, particularly the assumed attacker-to-benign ratio
1, sampling budget N, and resulting number of randomly
sampled collaborators (corresponding to different levels of
information utilization rates). These parameters directly af-
fect its ability to detect adversarial agents while maintaining
effective collaboration among benign agents.
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Attacker Ratio. ROBOSAC assumes a known attacker ratio,
which dictates how many agents are treated as potentially com-
promised. If the ratio is underestimated, adversarial subsets
may evade detection, while overestimation risks discarding
benign agents. In real-world settings with dynamic networks,
accurately estimating this ratio is highly challenging where
the attacker-ratio estimation is subject to an adaptive attacker.

Sampling Budget. The sampling budget N, representing the
allowed number of iterations per perception cycle, determines
the maximum number of subsets to be evaluated to find a ro-
bust collaboration group. A higher sampling budgets increase
robustness but imposes significant computational overhead,
especially as the number of agents grows. As the sampling
budget grows exponentially with respect to both the attacker
ratio and number of collaborators demanded, under the strin-
gent constraints of end-to-end AV delay and the restricted
computation resources, ROBOSAC would refuses to sample
anyone even a single attacker presence is suspected under a
practical setting.

Number of Collaborators. ROBOSAC sacrifices informa-
tion utilization by conservatively excluding agents during
robust sampling. The maximum achievable utilization rate
declines with increasing agent subsets, as only a fraction
of agents are included in the final collaboration. This un-
derutilization limits the benefits of cooperative perception,
particularly in adversarial scenarios.

Similarity Threshold. The similarity threshold € between
two sets of inference results, in ROBOSAC’s hyperparame-
ter tuning impacts the acceptance of detection results. The
Jaccard index was used to evaluate the consistency between
bounding box sets by calculating the ratio of matched bound-
ing boxes to the total number of bounding boxes across agents
minus the matched ones. A higher similarity threshold ensures
stricter validation but increases the likelihood of discarding
benign agent contributions due to minor discrepancies caused
by sensor noise or environmental factors.

In practical deployments, this rigid requirement can lead to
reduced information utilization, as the system may frequently
reject collaborative results even when they are accurate. Low-
ering the threshold to improve inclusion, on the other hand,
risks allowing adversarial contributions to pass undetected
(e.g., single object removal). Striking a balance between these
competing goals is non-trivial and further emphasizes the limi-
tations of reactive RANSAC-based approaches, which rely on
such global metrics to determine trustworthy collaborations.

Appendix D Feature Consistency

Alignment via Ego-Vehicle Pose Information. Modern CP
systems align feature maps by leveraging pose information
from participating vehicles [68]. By applying affine trans-
formations to warp local coordinate systems, features corre-
sponding to the same physical objects are co-registered into a

unified spatial representation in the latent semantic domain.
This alignment ensures that differences in viewpoint are ef-
fectively neutralized, allowing consistency to be measured
meaningfully.

Bird’s Eye View (BEV) Feature Representations. BEV
features are commonly used by CP systems and are well-
suited for ensuring consistency across agents. BEV encoders
aggregate information from camera images [30] or LiDAR
point clouds [26] into a 2D top-down perspective. Such repre-
sentations focus on horizontal spatial distributions, reducing
the sensitivity to varying viewpoints. Therefore, features
corresponding to overlapping areas remain largely consistent,
even when agents observe them from different viewpoints.

Effect of Feature Misalignment. In CP, feature misalign-
ment can happen due to benign localization errors or sensor
spoofing attacks. Such misalignment can decrease the percep-
tion performance. To address the challenge brought by benign
localization errors, SOTA CP algorithms leverage multiple
CNN kernel sizes and effectively learn to fuse at different res-
olutions [38]. Intuitively, spacial misalignment is mitigated
when the feature is compressed to a lower resolution, which is
also integrated into the design of LucIA. A substantial feature
misalignment (e.g., an offset of 10 meters) is challenging for
CP algorithms and will result in a significantly reduced per-
ception performance (e.g., >50% reduction in accuracy [27]).
However, such misalignment would incur high inconsisten-
cies with other features and hence lower trust scores under
Lucia, which results in low contribution in the final fused
feature. In other words, Lucia effectively neutralized the
contribution of the misaligned feature, either due to attack or
harsh environment (e.g., dense urban topology), and restores
the perception performance of the system.

Effect of Field-of-View Overlap. CP benefits the perception
range of CAVs by enabling them to see through occlusions.
Intuitively, feature consistencies and hence trustworthiness
scores in Lucla increases as the overlap in Field-of-View
(FoV) increases among agents. The similar holds for RO-
BOSAC [29] where larger FOV implies smaller distance be-
tween local inference results and that made on the fused fea-
ture of randomly sampled subset. Instead of a rigid similarity
threshold applied to the final detection results like ROBOSAC
(e.g., 70% of objects must be matched in order to be consid-
ered truthful), Lucia dynamically compares across all agents’
features simultaneously and assigns trustworthiness-informed
attention score accordingly. Nevertheless, it encapsulates the
similar philosophy to ROBOSAC that a message that suffi-
ciently diffesr from the others’ and the local view is either
alarming or is of lesser use (e.g., low overlap in FoV due to
far distance).

Feature Consistency as Defense. Recent studies have re-
vealed a compelling observation regarding the behavior of
deep neural networks when processing benign and adversar-
ial examples. Specifically, these studies have discovered a
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Figure 13: Top-down visualization of the custom simulated
traffic jam data.

lack of consistency in feature representations between these
two types of inputs [35]. It has been found that natural ex-
amples exhibit more compact similarity matrices compared
to their adversarial counterparts. This suggests that benign
samples from the same class tend to cluster more tightly in
the latent feature space, whereas adversarial examples ex-
hibit greater dispersion. This observation has been leveraged
to develop defense mechanisms, such as Bit Plane Feature
Consistency (BPFC) and Latent Feature Relation Consistency
(LFRC) [35,54]. These methods aim to enforce consistency
in feature representations by either promoting agreement be-
tween features extracted from different bit planes of an image
or constraining the similarity between the latent feature rela-
tionships of natural and adversarial examples within a batch.
By encouraging such consistency, these techniques guide the
model to learn more robust features that are less susceptible
to adversarial perturbations.

Appendix E Dataset Collection for the Traffic
Jam Scenario

To evaluate SoMBRA under extreme conditions with a high
density of collaborating vehicles, we generated a customized
dataset simulating a traffic jam scenario (Figure 13). This
dataset serves as the basis for the case study in Section 6.3.
Simulation Environment and Tools. We utilized the
CARLA digital driving simulator [11] in conjunction with
the OpenCDA framework [66] for coordinated multi-agent
simulation and data recording. The data was collected follow-
ing the same format and conventions as the public OPV2V
benchmark dataset, including sensor configurations, coordi-
nate systems, and CAV parameters, to ensure compatibility
with existing CP models and evaluation pipelines.

Scenario Setup. The scenario was staged within CARLA’s
‘Town10HD’ map, specifically focusing on a large, multi-lane
intersection known for enabling complex traffic interactions.

We simultaneously spawned and controlled 50 CAVs within
the vicinity of this intersection, ensuring dense traffic condi-
tions representative of a jam. Each CAV was equipped with
LiDAR sensors and participated in CP.

Context and Motivation. It is important to note that scal-
ing cooperative perception to 50 simultaneous agents in the
real world remains a significant research challenge. Current
V2X communication standards (e.g., C-V2X, DSRC) offer
limited bandwidth [12, 13], which is often insufficient for
reliably transmitting the large volumes of data required for
raw or intermediate feature sharing among numerous vehi-
cles, especially dense sensor data like LiDAR point clouds [8].
Consequently, much of the existing CP research focuses on
scenarios involving a smaller number of agents, typically
ranging from 2 to 5 CAVs. Furthermore, in extremely dense
and slow-moving traffic, the potential benefits of CP (e.g.,
extended perception range) might diminish compared to less
congested conditions.

Despite these practical limitations, we constructed this ide-
alized 50-CAV scenario specifically to rigorously test the
scalability of the SoMBRA methodology. Our goal was not
to perfectly replicate current real-world communication con-
straints, but rather to demonstrate how effectively the attack
leverages the attention mechanism even when the number of
participating agents is large. By showing SOMBRA’s potency
in this worst-case setting, we highlight the critical vulner-
ability posed by attention manipulation, irrespective of the
number of benign contributors.

Appendix F  Robustness of V2VAM

We observed that V2VAM [28] appears to be harder to protect
by Lucia. Note that V2VAM employs Criss-Cross attention
(CCNet) [20], a variant of the dot-product attention [60] em-
ployed in other CP algorithms, as its fusion backbone. In
CCNet, features are exchanged more locally across spatial di-
mensions, which can amplify partial manipulations from the
adversarial source. Consequently, when the attacker mimics
the victim’s exact feature and only introduces slight devi-
ations, V2VAM'’s localized attention updates can be more
easily hijacked. This narrower attention scope also limits the
effectiveness of global, consistency-based defenses, making it
harder for trust scores to isolate and downweight the attacker’s
carefully aligned perturbations. Additionally, V2VAM has
a unique fusion design of an agent-wise max-out operation
as an addition to the fused feature. Although the additional
component helps preserve strong benign signals, it can be
readily exploited by an attacker by ensuring at least half of
the final attention comes from (dominant) malicious signal.
This design sacrifices its robustness and makes it more vul-
nerable to adversarial attacks even under non-adaptive attacks
and the baseline attacks.

7406 34th USENIX Security Symposium

USENIX Association



	Introduction
	Background and Related Work
	Cooperative Perception Systems
	Related Work

	System and Threat Model
	System Model
	Threat Model

	Sombra: Attacking Attentive Fusion
	Problem Statement
	Attentive Fusion Mechanism
	Object Removal Loss

	Lucia: Harnessing Attention for Trust
	Existing Defenses & Limitations
	Our Defense Methodology
	Advantages of Our Defense

	Evaluation
	Experimental Setup
	Implementation
	Evaluation Metrics

	Evaluation of Attacks
	Case Study: High-Density Traffic Scenario
	Evaluation of Defenses
	Defense against Adaptive Attacker

	Discussions and Future Work
	Conclusion
	Transfer Attack
	Derivation of Attacker Influence Bound
	Hyperparameter Sensitivity of RANSAC-Based Defenses
	Feature Consistency
	Dataset Collection for the Traffic Jam Scenario
	Robustness of V2VAM

