
Malware Traffic Detection using
Tamper Resistant Features

Z. Berkay Celik∗, Robert J. Walls∗, Patrick McDaniel∗, and Ananthram Swami†
∗Department of Computer Science and Engineering

The Pennsylvania State University
Email: {zbc102,rjwalls,mcdaniel}@cse.psu.edu

†Army Research Laboratory
Email: ananthram.swami.civ@mail.mil

Abstract—This paper presents a framework for evaluating
the transport layer feature space of malware heartbeat traffic.
We utilize these features in a prototype detection system to
distinguish malware traffic from traffic generated by legitimate
applications. In contrast to previous work, we eliminate features
at risk of producing overly optimistic detection results, detect pre-
viously unobserved anomalous behavior, and rely only on tamper-
resistant features making it difficult for sophisticated malware
to avoid detection. Further, we characterize the evolution of
malware evasion techniques over time by examining the behavior
of 16 malware families. In particular, we highlight the difficultly
of detecting malware that use traffic-shaping techniques to mimic
legitimate traffic.

I. INTRODUCTION AND RELATED WORK

Decades of experience suggest it is infeasible to completely
secure all networked hosts. In other words, it is inevitable
that some machines will be compromised by malware. Given
this fact, system administrators must instead rely on detection
systems to identify infected machines on their networks.

However, malware detection presents its own set of chal-
lenges. First, detecting malware at the time of infection is com-
plicated by the myriad attack vectors malicious software may
exploit to infect a host. Emails, USB drives, and web-based
attacks are just a few of the common mechanisms employed
by malware writers to deliver their payloads. Second, once
installed on the machine, the malware may carry out a variety
of malicious activities such as click fraud, data exfiltration,
DDoS attacks, or spam transmission. Some of these behaviors
may be indistinguishable from legitimate traffic, e.g., click
fraud or data exfiltration [1].

A more robust approach is to detect the malware’s com-
mand and control (C2) traffic. In addition to their malicious
activities, infected hosts must also communicate periodically
with special hosts, called C2 servers, to coordinate attacks,
download updates, perform maintenance, and send keep-alive
messages. In this paper, we focus on detecting such traffic.

Researchers have proposed many network-based techniques
to detect or mitigate malware communication channels.
Signature-based detection systems are the most common, but
they are fundamentally unable to detect malware traffic not
previously identified [2] (for which there exists no signature).

Research was sponsored by the Army Research Laboratory and was ac-
complished under Cooperative Agreement Number W911NF-13-2-0045 (ARL
Cyber Security CRA). The views and conclusions contained in this document
are those of the authors and should not be interpreted as representing the
official policies, either expressed or implied, of the Army Research Laboratory
or the U.S. Government. The U.S. Government is authorized to reproduce and
distribute reprints for Government purposes notwithstanding any copyright
notation here on.

Supervised learning approaches eliminate the need to manually
create signatures, but these techniques also suffer from an in-
ability to detect previously unobserved malware behaviors [3].
To overcome these problems, some have proposed anomaly
(i.e., outlier or novelty) detection methods. These methods
detect behavior that deviates from the normal hosts. However,
because ground-truth labeled anomalous class samples are not
typically known a priori, it is difficult to select the most
discriminating subset of the features between normal and
anomalous classes [4].

Recently, malware clustering and signature generation sys-
tems have been proposed to group malware based on features
extracted from malware communication channels [3], [5], [6].
While promising, existing techniques in this space suffer from
several limitations. First, these systems extract features that
can be spoofed by an attacker to evade detection: HTTP
headers, URLs, protocol specific and payload information [5],
[7]. Second, features that rely heavily on payload inspection
are vulnerable to privacy issues, payload encryption, and
raise performance concerns in high-speed (multi-gigabit) net-
works [8]. Third, simulated timing-based features may result
in unrealistic or optimistic results [5], [9]. Consequently, these
systems are limited to only short-lived lifetime of malware,
and can be easily evaded by further versions of the malware.

With this vision, we analyze the performance of an early-
stage detector based on robust tamper resistant features. We
demonstrate that the detector works well despite the structural
similarities between the network level behaviors of legitimate
traffic and malware traffic that has been blended with normal
traffic. Our goal is to analyze the subset of the malware traffic
that is in a stealth state where the malware slowly/subtly
generates traffic to send control, keep alive, command transfer
messages, update requests, or peer list queries. These messages
are required to remotely communicate and control the infected
hosts. Additionally, they are used to learn the size of the in-
fected machines by the attackers, and hosts use them to receive
the query updates. In the rest of the paper, we use heartbeat
traffic as a representative subset of malware communication
packets.

We model flow-based features of the normal network activi-
ties by excluding all sharp signals that may result in optimistic
detection of malware infections. We model traffic patterns
by only using the first n packets (cf., Section II-B) that
pass through two endpoints instead of capturing all network
packets, or full flow based features. Specifically, we extract
reliable and tamper-resistant flow features from only packet
headers to detect the suspicious C2 heartbeat traffic of a single



Malware Traces

Background Traffic

Statistical Feature
Extraction

Feature
Filtering/Selection

Logging

Flow Generator Tool

Unsupervised
Learning

Algorithms

Anomaly Score
Evaluation

Merging Dataset for
Different Malware

Family

Fig. 1: Overview of framework

infected host in real time. Additionally, before blending the
malware traffic with the normal traffic, unnatural heterogeneity
between malware and legitimate timing based features is
eliminated by sampling from the eligible background round
trip times (RTT) [10]. Then, for each malware family, we test
whether the anomaly detector is able to recognize an unknown
attack.

Essentially, our framework is not by itself a prevention or
detection technique. However, this approach gives insights into
malware traffic design, and modeling legitimate applications.
In addition, evaluating malware traces with legitimate applica-
tions can be used to augment existing security measures as a
complementary diagnostic in malware detection systems such
as [3] to keep the risk of false negatives low, port spoofing de-
tection [11] and to identify applications for intrusion detection
[12].

II. SYSTEM DETAILS

In this section, we describe our framework as shown in
Figure 1. We begin by describing feature extraction and
calibration of network traces, flow generation procedure, flow
features extracted both from legitimate and malware traffic,
deployment and adaptation of the framework. We then describe
the dataset and unsupervised anomaly detection algorithms
used in our experiments.

A. Threat Model

Malware C2 communication patterns have recently evolved
from IRC to POP, HTTP and the communication structure has
moved from centralized to more sophisticated decentralized
structures such as peer-to-peer (P2P) networks where fast-
flux DNS services are common. With the further evolution of
various malware families, UDP is used as the main communi-
cation protocol between bots. However, a majority of malware
families commonly use TCP for reliable communications. As
an example, Kelihos and Zeus P2P botnets use TCP between
C2 server and bots to deliver tasks, exchange information, and
update binary/configuration files [13].

For the purposes of this paper, we focus on malware
traffic that is either in a sleep or stealth state when malware
starts discreetly generating TCP traffic during the malware
initialization phase or after the installation phase has been
achieved. Recall that this traffic may have multiple purposes:
connect to their C2 servers to get commands, send keep alive
messages or update themselves (i.e., heartbeat traffic).

Our approach does not seek to detect all traffic activity
of C2 channels (e.g., [14]), a group of compromised hosts
that generate similar traffic patterns (e.g., [15]), or detect
them during the exploitation phase (e.g., [16]). We focus on
detecting point anomalies of malware heartbeat traffic in real
time by using tamper resistant features (cf., Section II-B)
extracted from the transport layer feature space of the network
flows.

B. Feature Extraction and Selection

Our framework relies on the statistics of TCP network
flows extracted from only five unidirectional or bidirectional
sequence packets between two endpoints after a successful 3-
way handshake is established. We have selected the number
of packets as five, as most malware do not exceed 15 packets
in order to be stealthy and reiterate their operations in hard-
coded time intervals. Figure 2 shows the empirical cumulative
distribution function of number of packet exchanges from
client to server and server to client of all malware families.
85% percent of the infected machines generate less than 15
packets per flow, and the remainder shows the packet exchange
during malware executable updates. Hence, we use the first
five packets to extract features. These extracted features are
also good candidates for real-time and early-stage modeling
of the traffic behavior. The features are selected from the

0.00

0.25

0.50

0.75

1.00

10 100

client to server

P
ro

b
a
b
ili

ty

 

0.00

0.25

0.50

0.75

1.00

10 1000

server to client

 

 

Fig. 2: Log scale plot of number of packets

248 flow-level features described in [17], [18] after applying
a correlation-based filtering mechanism on normal traffic.
The correlation-based filter examines the relevance of each
feature as having minimal correlation between classes but
being highly correlated to a specific class [19]. We have
selected promising features that are not strongly dependent on
TCP. In addition, the features do not include port-based, flag
information (e.g., count of packets with the PSH (push) flag set
to 1 in the TCP option field) or payload-based analysis, which
are vulnerable to the use of dynamic port numbers, encryption
of payload, and masquerading techniques to avoid detection.
These vulnerable features may result in optimistic detection
performance. For example, using only port numbers yields
accuracy similar to that obtained by using all the features in
a supervised algorithm [11].

We select the following TCP based statistical flow features
to model the behavior of traffic with some minor elimination of
the feature space proposed in [10], [11], [18], [21] (∗ indicates
that the features are bidirectional (server to client and client
to server), + and − represent features from client to server,
server to client respectively):
• Flow duration: Difference between last packet time and

first packet time.



ftp

http

https

imap

pop3

sms−chat

smtp

ssh

others

0.0 0.1 0.2 0.3 0.4

Fraction

 

 

(a) Application breakdown of legitimate traffic

accessbuilder

http

https

mit−dov

ms−wbt−server

netbios−ssn

responselogic

submission

others

0.0 0.2 0.4

Fraction

 

 

(b) Port number breakdown of malware traffic

Fig. 3: Applications using server port numbers as a ground truth are determined by Internet Assigned Numbers Authority
(IANA)’s list of registered ports [20]

• Count of payload (+): Count of all the packets with at
least one byte of payload.

• Min data size (+): Minimum payload size observed.
• Mean of bytes (−): Data bytes divided by the total

number of packets.
• Initial data length (∗): The total number of bytes sent

before the first ACK packet was observed.
• RTT samples (+): Total number of RTT samples found

in total packets.
• Median of bytes (+): Median byte length of packets.
• Variance of bytes (−): Variance of byte length of packets.
• IP ratio (∗): Ratio between the maximum packet size and

minimum packet size.
• Goodput (∗): Total number of frame bytes divided by flow

duration.
The extracted features can be defined as either static features

or dynamic features. Flow duration is an example of a static
feature that is not carried in the packet header over the lifetime
of the flow. Dynamic features are likely to change as the flow
progresses through time, and are calculated using only packet
headers. Furthermore, some features can be drawn from both
dynamic and static features (e.g., goodput).

In addition, during the feature extraction process, we cali-
brate the time-sensitive features of malware traces: flow dura-
tion and goodput. Fundamentally, the calibration process in-
cludes the sampling of the eligible RTTs (both client to server
and server to client) from background traffic and changing the
RTTs of malware traffic to provide consistency between the
timing-based features of the two traces. Otherwise, simulated
or real world captured malware may show unrealistic results
due to the bandwidth, connectivity, and latency differences.
The process of calibration is described in [10], and ensures
that synthetic features do not provide an unrealistically sharp
signal when merged with background traffic especially if the
background traffic is real captured traffic and malware traces
are synthetically generated.

C. Adaptation and Deployment of Framework

Our framework can be located at a live network traffic
point in large enterprise networks where it can observe the
traffic between a large set of hosts and the Internet. More
importantly, our framework can be easily adapted for flow-
based systems such as NetFlow, sFlow and Jflow with given
metrics of number of packets (n) and flow inactivity timeout
(t) [22]. First, legitimate traffic flows are collected to model
legitimate applications in the target domain with the given
metrics. This process is required to learn the target domain
applications, and relevant features of the network behavior

in order to eliminate portability of imperfect and insufficient
features between sites, as the network traces collected at
different sites may involve different types of applications, and
may show different network behaviors. After sufficient number
of flows are aggregated from the target domain, our framework
can be efficiently used in terms of storage and computational
cost in high speed networks by only using the transport layer
features extracted from the first n packets.

D. Dataset

For our evaluation, we have selected publicly available
enterprise-like network traces collected in a controlled envi-
ronment such as behind firewalls and anti-virus software. We
use the traces of a small scale organization network recorded
at the University of Twente with around 35 employees and
over 100 students recorded from May - June 2007 [23].
We observe that the traces are good representations of non-
malicious traffic where the quality is not subject to unexpected
regimes due to malicious user behavior, or external changes
to the network. In addition, the port numbers in the TCP
headers are intact, which provides information about type of
application when traces were recorded. A subset of the traces
is used in our experiments, and 7753 flows are extracted. The
protocol distribution of normal traffic is shown in Figure 3a.
The protocols include both internal and external traffic, and
this variety of traffic is a good example of day-to-day use of
a campus network.

We use publicly available network traces of 21 different
recent and active malware families collected from 2007 to
2014. Malware families used in our experiments can be down-
loaded1 2 3, and most of them have been recently analyzed
in experiments [24]–[26]. The analyzed malware families
are used as malware-kits, spam distribution, DDoS attacks,
click fraud and port scanning, and generate a vast variety of
network behaviors such as exhibiting obfuscation techniques
(i.e., polymorphism in IPs, domains, and payloads), use of
Tor-based and fast-flux networks. Our framework accepts these
malware traces as a PCAP file, and the IP addresses of infected
machines need to be specified to analyze the malware traffic.
We extracted a total of 3600 flows of malware traffic. We
observe that some malware families cannot establish a 3-
way handshake, so we ignore the traffic they have generated.
In addition, we are able to extract only a small number of
instances from some of the malware families, because of

1http://mcfp.felk.cvut.cz/
2http://contagiodump.blogspot.co.uk/2013/04/collection-ofpcap-files-from-

malware.html
3http://www.iscx.ca/datasets



Dataset Method

Date Number of Flows OCSVM k-NN LSAD k-Means

Agobot 2002 8 0.7697 0.9779 0.7075 0.9505
Donbot 2006 33 0.7632 0.9979 0.6987 0.9983
Kaiten 2007 49 0.7726 0.7776 0.7141 0.4186
ZeusV1 2007 50 0.7864 0.8538 0.7207 0.7587
Qbot 2008 126 0.7994 0.9166 0.7236 0.8410
Sality 2008 4 0.7686 0.8567 0.7107 0.6196
Torpig 2008 4 0.7786 0.8412 0.7120 0.7611
Neris 2009 1688 0.8013 0.8337 0.7361 0.8112
Kelihos 2010 8 0.7762 0.9846 0.7136 0.9734
Rbot 2010 806 0.7664 0.8966 0.6969 0.8304
Spyeye 2010 15 0.7737 0.8183 0.7161 0.8271
Zeroaccess 2011 363 0.8065 0.8708 0.7252 0.7508
ZeusGameover 2011 48 0.7347 0.8373 0.6923 0.7769
Tbot 2012 384 0.8073 0.9131 0.7239 0.9161
ZeusPonyloader 2012 8 0.7754 0.8815 0.7144 0.6679
ZeusV2 2013 6 0.6868 0.7421 0.7239 0.7350

Avg. Time 460.75 10.66 91.85 68.64

TABLE I: AUC results

unsuccessful TCP connections, and lack of available traffic.
Even though these traces may not be perfect representation of
variation or range of malware behavior, we include them in our
experiments to evaluate the subset of their behaviors. Figure
3b shows the protocol distribution of malware traffic, which
should be compared with Figure 3a for legitimate traffic. We
observe that a very large fraction of legitimate and malware
traffic overlaps with the HTTP(S) traffic.

E. Anomaly (Novelty) Detection Algorithms

We apply four anomaly detection algorithms that work
under different assumptions based on the idea that anomalies
are rare compared to the normal traffic. These algorithms
are widely adapted to different domains and categorized as
clustering based, density-based, SVM based, least-square cost
function based. In our experiments, we use one-class support
vector machine (OCSVM) with RBF (radial basis function)
kernel [27], the distance to the kth nearest neighbor (k-
NN), k-means clustering [4] followed by finding the distance
from the test data to the nearest cluster centre, and least
squares anomaly detection (LSAD) based on the least-squares
probabilistic classifier [28].

These algorithms require selection of hyperparameters to
be fixed before the experiments are conducted. This adds a
challenge in unsupervised learning and may result in selecting
different parameters for different families of malware. To solve
this problem, we set the parameters of the LSAD smoothness
(σ) which controls the kernel length scale, and regularization
parameter (ρ) which controls the sensitivity to outliers, margin
of the OCSVM (ν), the number of nearest neighbors for k-
NN and k-means using a subset of the training set, and other
parameters are set as default. We have implemented these
algorithms in Python using the scikit-learn2 implementations
(i.e., k-NN, k-means, OCSVM (based on libsvm) [29] and
public released LSAD python code [28]).

III. EVALUATION

We now evaluate each malware family separately to observe
whether their traffic is categorized as intrusive or legitimate
after blending into the legitimate traffic that is represented as
inliers.

A. Evaluation Metrics

We report the average AUC (Area Under Curve) value of
each malware family after stratified k-fold cross validation

(i.e., k is selected depending on the malware traffic size),
or random sampling (depending on the number of malware
instances) is applied. We also use ROC curves, detection and
false alarm rates to evaluate the behavior of the malware. More
specifically, we use ROC curve to visualize the performance of
the detector by plotting the percentage of correctly classified
malicious samples (true positive rate) against the percentage
of clean samples falsely classified as malicious (false negative
rate), and AUC is used to summarize the detectors perfor-
mance as a single number which represents the area under the
ROC curve. Finally, we apply a paired t-test with significance
level 0.05 to report the differences of each algorithm’s AUC
values.

B. Results

Table I presents the malware families, and the corresponding
number of extracted flows. We report the AUC values for
each anomaly detection algorithm, and the total average time
required to run the experiments. We also obtain the creation
date of the malware families by tracking the malware names
and executables (if available) that have appeared in trusted web
pages or research papers. Bold values represent the maximal
AUC result of the algorithms, and italics represent that there
is no significant difference between the algorithms after t-test
is applied.

Our experimental results lead to the following interesting
observations: First, even though we observe that many re-
cent malware families change their main protocol to UDP,
we also observe that TCP traffic is still commonly utilized
(i.e., mostly in HTTP(S) traffic) for malicious activities and
heartbeat messages. Second, the anomaly detection algorithms
are invariant to how the features of the malware families are
handled i.e., there is no one global algorithm that outperforms
all others. As an example, Figure 4 depicts the ROC curves
for all four algorithms. k-NN mostly outperforms the other
algorithms, and LSAD performs more poorly than the other
algorithms. However, when we compare the average total time
of running experiments, LSAD outperforms OCSVM.

We next compare the ROC curves 4 of the malware families.
We observe that the performance of the detectors gradually
drops with the evolution of malware families as presented in
Figure 4. One of the reasons for such a decline in detection is

4Due to the space constraints, it is not possible to present all ROC curves.
We have focused on the most significant findings of detection decline of
malware families over time.



0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue
 P
os
iti
ve
 R
at
e

Average ROC Curve, Donbot

OCSVM (AUC = 0.77)
KNN (AUC = 0.99)
LSAD (AUC = 0.71)
KM (AUC = 0.99)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue
 P
os
iti
ve
 R
at
e

Average ROC Curve, ZeusGameover

OCSVM (AUC = 0.74)
KNN (AUC = 0.84)
LSAD (AUC = 0.72)
KM (AUC = 0.77)

Fig. 4: ROC curves (Donbot vs. Zeus Gameover)

the number of false negatives. To better observe the major
source of the false negatives, we apply the C4.5 decision
tree classifier [30] by labeling each instance of the legitimate
applications depending on the application class (e.g., HTTP(S)
traffic is labeled as web, and pop3, imap, imaps and smtp are
labeled as email) by using the port numbers as the ground
truth labels. The C4.5 algorithm uses normalized largest
information gain to split the dataset into sub-groups, ending
at the leaf nodes. We also apply subtree raising algorithm to
overcome the overfitting problem. We run the experiments for
each malware family separately using stratified k-fold cross
validation, and average the results of the false positive and
false negative counts.

Sality Tbot Spyeye ZeusV1 ZeusGameOver ZeusP.Loader ZeusV2

web 0 (0%) 11 (0.025%) 4 (0.009%) 8 (0.018%) 8 (0.018%) 0 (0%) 0 (0%)

TABLE II: False positive counts

Sality Tbot Spyeye ZeusV1 ZeusGameOver ZeusP.Loader ZeusV2

web 4 (100%) 11 (0.029%) 9 (60%) 23 (45%) 22 (45.8%) 8 (100%) 6 (100%)

TABLE III: False negative counts

Tables II and III shows the number of legitimate web appli-
cations that are classified as malware instances and the num-
ber of malware instances classified as legitimate applications
respectively. Even though we have limited representation of
malware C2 instances (e.g., Zeus V2, and Sality), we observe
that malware traffic is disguised amongst web traffic with the
evaluation of Zeus botnet variants. This explains the decline
of AUC results with evolution of the recent malware families.
One possible approach to augment the detection would be
to jointly investigate other features from HTTP requests or
DNS packets with our feature space. As an example, size
and sequence information of packets with more advanced
probability models to find latent anomalous class [21], [31] or
DNS features [32] may reduce the number of false negatives
by constructing a fine-grained feature space.

We next plot the ratio of incoming and outgoing packet
bytes (i.e., packet size ratio) to explain how malware families
change their network behavior, and disguise their patterns
in HTTP traffic. Figure 5 shows the box plot of the packet
ratio per flow among the most similar HTTP traffic observed
between the legitimate and malware traffic. We first observe
that recent malware families generate similar packet size
symmetry between each other. Second, they use polymorphic
network traffic to avoid detection by generating more variable
traffic. As an example, Kelihos generates a high level of
agreement of packet bytes, whereas Zeus variants generate

0.1

10.0

Kel
ih
os

Sal
ity

Spy
ey

e

Zer
oa

cc
es

s

Zeu
sG

am
eO

ve
r

Zeu
sP

on
yL

oa
de

r

Zeu
sV

2

Le
gi
tim

at
e 

 

P
a
c
k
e
t 

s
iz

e
 r

a
ti
o

Fig. 5: Packet size ratio distribution for different malware
families

variable packet bytes within the range of legitimate HTTP
traffic. Similar to the reasons for false negatives, a major
source of false positives is the approach used by the malware
variants to mimic legitimate HTTP traffic in order to disguise
their traffic.

Similarity of packet ratio between malware families may
also indicate that code reuse is common in malware. We
present an example to interpret the code reuse by projecting
the feature space of the malware to a more interpretable
two dimensional space. We apply PCA (Principal Component
Analysis) [33], and select the eigenvectors corresponding to
the two largest variances of the principal components. First, we
transform each malware family by removing the mean value of
each feature, and then divide by the standard deviation. Then,
we plot the transformed feature space of malware families
in two-dimensional space. Furthermore, we apply k-means
clustering algorithm [34] to the projected features by selecting
the number of clusters as the number of malware families,
using the Euclidean distance metric. The two-dimensional
scatter plot and clustering are helpful in interpreting and
identifying relationships within and between malware families.
In Figure 6, we observe that the malware instances such as
Tbot and Kaiten are close to each other, and form a single
cluster. However, Agabot is not as close as the other malware
families. Zeus V1, ZeusGameover, ZeusPonyloader, ZeusV2
and Sality are in similar feature range, and most of their
instances are assigned to the same clusters. The similarity
observed in Figure 6 may be indicative of code reuse, or
addition of new patches to previous versions.

IV. CONCLUSION

We presented a framework that evaluates the detection
performance of malware heartbeat traffic that has been blended
with traffic from legitimate applications. We demonstrate
that our framework effectively discriminates most of the C2
heartbeat traffic from legitimate traffic by only using tamper



−2 0 2 4 6 8
Principal component 1

−8

−6

−4

−2

0

2

4

6

8

Pr
in

ci
pa

l c
om

po
ne

nt
 2

ZeusPonyloader
ZeusGameover
ZeusV1
ZeusV2
Sality
Tbot
Agobot
Donbot
Kaiten

(a) Feature projection of malware

−2 0 2 4 6 8
Principal component 1

−8

−6

−4

−2

0

2

4

6

8

Pr
in

ci
pa

l c
om

po
ne

nt
 2

C1
C2
C3
C4
C5
C6
C7
C8
C9

(b) k-means clustering

Fig. 6: Similarity of malware feature space

resistant features of the transport layer protocol. However,
it is important to note that we observe substantial decrease
in detection with the recent malware families, as malware
traffic is disguised in HTTP traffic to conduct an evasion
attack. Further, we also show that code reuse is common
practice in malware families. We also provide a discussion
of the importance of using tamper resistant feature space, and
multiple sources of information to alleviate false negatives.

REFERENCES

[1] Gregoire Jacob, Ralf Hund, Christopher Kruegel, and Thorsten Holz.
Jackstraws: Picking command and control connections from bot traffic.
In Proc. USENIX Security Symposium, 2011.

[2] P. Garcia-Teodoro, J Diaz-Verdejo, G. Maciá-Fernández, and
E. Vázquez. Anomaly-based network intrusion detection: Techniques,
systems and challenges. In Computers & Security, 2009.

[3] Terry Nelms, Roberto Perdisci, and Mustaque Ahamad. Execscent:
Mining for new c&c domains in live networks with adaptive control
protocol templates. In Proc. USENIX Security Symposium, 2013.

[4] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly
detection: A survey. In ACM Computing Surveys, 2009.

[5] M Zubair Rafique and Juan Caballero. Firma: Malware clustering and
network signature generation with mixed network behaviors. In Proc.
Research in Attacks, Intrusions, and Defenses (RAID). 2013.

[6] Roberto Perdisci, Wenke Lee, and Nick Feamster. Behavioral clustering
of http-based malware and signature generation using malicious network
traces. In Proc. Networked Systems Design and Implementation, 2010.

[7] Peter Wurzinger, Leyla Bilge, Thorsten Holz, Jan Goebel, Christopher
Kruegel, and Engin Kirda. Automatically generating models for botnet
detection. In Proc. European Symposium on Research in Computer
Security (ESORICS). 2009.

[8] Anna Sperotto, Gregor Schaffrath, Ramin Sadre, Cristian Morariu, Aiko
Pras, and Burkhard Stiller. An overview of ip flow-based intrusion
detection. In Communications Surveys & Tutorials, 2010.

[9] S. Saad, I. Traore, A. Ghorbani, B. Sayed, D. Zhao, W. Lu, J. Felix, and
P. Hakimian. Detecting p2p botnets through network behavior analysis
and machine learning. In Proc. Privacy, Security and Trust (PST), 2011.

[10] Z Berkay Celik, Jayaram Raghuram, George Kesidis, and David J Miller.
Salting public traces with attack traffic to test flow classifiers. In Proc.
Cyber Security Experimentation and Test (CSET), 2011.

[11] Guixi Zou, George Kesidis, and David J Miller. A flow classifier with
tamper-resistant features and an evaluation of its portability to new
domains. Selected Areas in Communications (JSAC), 2011.

[12] Bryan Burns, Siying Yang, and Julien Sobrier. Identifying applications
for intrusion detection systems, October 16 2012. US Patent 8,291,495.

[13] Dennis Andriesse, Christian Rossow, Brett Stone-Gross, Daniel
Plohmann, and Herbert Bos. Highly resilient peer-to-peer botnets are
here: An analysis of gameover zeus. In Proc. International Conference
on Malicious and Unwanted Software, 2013.

[14] Leyla Bilge, Davide Balzarotti, William Robertson, Engin Kirda, and
Christopher Kruegel. Disclosure: Detecting botnet command and control
servers through large-scale netflow analysis. In Proc. Annual Computer
Security Applications Conference, 2012.

[15] Guofei Gu, Roberto Perdisci, Junjie Zhang, Wenke Lee, et al. Bot-
miner: Clustering analysis of network traffic for protocol-and structure-
independent botnet detection. In Proc. USENIX Security Symposium,
2008.

[16] Luca Invernizzi et al. Nazca: Detecting malware distribution in large-
scale networks. In Proc. Network and Distributed System Security
Symposium (NDSS), 2014.

[17] Andrew Moore, Denis Zuev, and Michael Crogan. Discriminators for
use in flow-based classification. Queen Mary and Westfield College,
Department of Computer Science, 2005.

[18] Wei Li, Marco Canini, Andrew W Moore, and Raffaele Bolla. Effi-
cient application identification and the temporal and spatial stability of
classification schema. In Computer Networks, 2009.

[19] Lei Yu and Huan Liu. Feature selection for high-dimensional data: A
fast correlation-based filter solution. In Proc. International Conference
on Machine Learning, 2003.

[20] Internet Assigned Numbers Authority (IANA).
http://www.iana.org/assignments/port-numbers.

[21] David J Miller, Fatih Kocak, and George Kesidis. Sequential anomaly
detection in a batch with growing number of tests: Application to
network intrusion detection. In Proc. Machine Learning for Signal
Processing (MLSP), 2012.

[22] B. Trammell B. Claise and P. Aitken. Specification of the ip flow
information export (ipfix) protocol for the exchange of flow information,
rfc 7011 (internet standard), internet engineering task force, 2013.

[23] Rafael Barbosa, Ramin Sadre, Aiko Pras, and Remco Meent. Sim-
pleweb/university of twente traffic traces data repository. Technical
report, Centre for Telematics and Information Technology, University
of Twente, 2010.

[24] S Garcı́a, M Grill, J Stiborek, and A Zunino. An empirical comparison
of botnet detection methods. In Computers & Security, 2014.

[25] Ali Shiravi, Hadi Shiravi, Mahbod Tavallaee, and Ali A Ghorbani. To-
ward developing a systematic approach to generate benchmark datasets
for intrusion detection. In Computers & Security, 2012.

[26] Christian Rossow et al. Sok: P2pwned-modeling and evaluating the
resilience of peer-to-peer botnets. In Proc. Security and Privacy (SP),
2013.

[27] Bernhard Schölkopf, John C Platt, John Shawe-Taylor, Alex J Smola,
and Robert C Williamson. Estimating the support of a high-dimensional
distribution. In Neural Computation, 2001.

[28] John A Quinn and Masashi Sugiyama. A least-squares approach to
anomaly detection in static and sequential data. Pattern Recognition
Letters, 2014.

[29] Pedregosa et al. Scikit-learn: Machine learning in python. The Journal
of Machine Learning Research, 2011.

[30] J Ross Quinlan. C4. 5: programs for machine learning. Elsevier, 2014.
[31] Fatih Kocak, David J Miller, and George Kesidis. Detecting anomalous

latent classes in a batch of network traffic flows. In Proc. Information
Sciences and Systems (CISS), 2014.

[32] Z Berkay Celik and Sema Oktug. Detection of fast-flux networks
using various dns feature sets. In Proc. Symposium on Computers and
Communications (ISCC), 2013.

[33] Ian Jolliffe. Principal component analysis. Wiley Online Library, 2002.
[34] James MacQueen et al. Some methods for classification and analysis of

multivariate observations. In Mathematical Statistics and Probability,
1967.


